Abstract
Disorder Attention Deficit/Hyperactivity Disorder, or ADHD, is recognized as one of the pathologies of high prevalence in children and adolescents from the global environment population; this disorder generates visible symptoms usually diminish with the passage of time in adulthood, however they remain concealed by demonstrations damnifican personal stability and human development apt. This article shows the results of the research aimed at determining the prevalence of symptoms of attention deficit hyperactivity disorder in Young Adults University of Barranquilla and its Metropolitan Area. The sample of 1600 young adults between 18 and 25 years, which has been estimated at 95% confidence level and a margin of error of 2.44%. The information was acquired through the application of exploratory instruments symptoms of attention deficit hyperactivity disorder. With the application of the algorithm different machine learning algorithms such as: Bagging, MultiBoostAB, DecisionStump, LogitBoost, FT, J48Graft, a high performance in the Bagging algorithm could be identified with the following results in quality metrics: Accuracy 91.67%, Precision 94.12%, Recall 88.89% and F-measure 91.43%.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Velázquez, J., García, M.: Trastorno por déficit de la atención e hiperactividad de la infancia a la vida adulta. Red de Revistas Científicas de América Latina, el Caribe, España y Portugal 9(4), 176–181 (2007)
Ramos-Quiroga, J., Chalita, P., Vidal, R., Bosch, R., Palomar, G., et al.: Diagnóstico y tratamiento del trastorno por déficit de atención/hiperactividad en adultos. Rev. Neurol. 54(1), 105–115 (2000)
Cabanyes, J., García, D.: Trastorno por déficit de atención e hiperactividad en el adulto: perspectivas actuales. Psiquiatría Biol. 13(3), 86–94 (2006)
Faraone, S.V., Biederman, J., Spencer, T., Wilens, T., Seidman, L.J., et al.: Attention-deficit/hyperactivity disorder in adults: an overview. Biol. Psychiatry 48(1), 9–20 (2000)
DANE: Archivo Nacional de Datos ANDA (2014). http://formularios.dane.gov.co/Anda_4_1/index.php/home. Citado 20 Marzo 2016
Pimienta-Lastra, R.: Encuestas probabilísticas vs. no probabilísticas. Polít. Cult. 13, 263–276 (2000)
León-Jacobus, A., Valle-Cordoba, S., Florez-Niño, Y.: Diseño y validación piloto del inventario exploratorio de síntomas de TDAH (IES-TDAH) ajustado al DSM-V en jóvenes universitarios (Trabajo de Grado) (2007)
Adler, L., Kessler, R., Spencer, T.: Instrucciones para contestar la Escala de Auto-reporte de síntomas de TDAH en Adultos (ASRS-V1.1) (2003). http://www.neuropediatrica.com/descargas/tests/AUTOREPORTE%20TDA%20ADUL.pdf. Citado 15 Feb 2016
Barceló-Martínez, E., León-Jacobus, A., Cortes-Peña, O., Valle-Córdoba, S., Flórez-Niño, Y.: Validación del inventario exploratorio de síntomas de TDAH (IES-TDAH) ajustado al DSM-V. Rev. Mex. Neu. 17(1), 1–113 (2016)
Breiman, L.: Bagging predictors. Mach. Learn. 24(2), 123–140 (1996). https://doi.org/10.1007/BF00058655
Friedman, J.H.: Stochastic gradient boosting. Comput. Stat. Data Anal. 38(4), 367–378 (2002)
Pang, J., Huang, Q., Jiang, S.: Multiple instance boost using graph embedding based decision stump for pedestrian detection. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008. LNCS, vol. 5305, pp. 541–552. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-88693-8_40
Bhargava, N., Sharma, G., Bhargava, R., Mathuria, M.: Decision tree analysis on J48 algorithm for data mining. Proc. Int. J. Adv. Res. Comput. Sci. Softw. Eng. 3(6) (2013)
Ariza-Colpas, P., et al.: Enkephalon - technological platform to support the diagnosis of Alzheimer’s disease through the analysis of resonance images using data mining techniques. In: Tan, Y., Shi, Y., Niu, B. (eds.) ICSI 2019. LNCS, vol. 11656, pp. 211–220. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26354-6_21
Davis, J., Goadrich, M.: The relationship between Precision-Recall and ROC curves. In: Proceedings of the 23rd International Conference on Machine Learning, pp. 233–240, June 2006
Powers, D.M.: Evaluation: from precision, recall and F-measure to ROC, informedness, markedness and correlation (2011)
Ye, K., Anton Feenstra, K., Heringa, J., IJzerman, A.P., Marchiori, E.: Multi-RELIEF: a method to recognize specificity determining residues from multiple sequence alignments using a Machine-Learning approach for feature weighting. Bioinformatics 24(1), 18–25 (2008)
Yih, W.T., Goodman, J., Hulten, G.: Learning at low false positive rates. In: CEAS, July 2006
Lane, T., Brodley, C.E.: An application of machine learning to anomaly detection. In: Proceedings of the 20th National Information Systems Security Conference, Baltimore, USA, vol. 377, pp. 366–380, October 1997
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Leon-Jacobus, A., Ariza-Colpas, P.P., Barcelo-Martínez, E., Piñeres-Melo, M.A., Morales-Ortega, R.C., Ovallos-Gazabon, D.A. (2020). Machine Learning Approach Applied to the Prevalence Analysis of ADHD Symptoms in Young Adults of Barranquilla, Colombia. In: Saeed, K., Dvorský, J. (eds) Computer Information Systems and Industrial Management. CISIM 2020. Lecture Notes in Computer Science(), vol 12133. Springer, Cham. https://doi.org/10.1007/978-3-030-47679-3_22
Download citation
DOI: https://doi.org/10.1007/978-3-030-47679-3_22
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-47678-6
Online ISBN: 978-3-030-47679-3
eBook Packages: Computer ScienceComputer Science (R0)