Skip to main content

Multi-criteria Differential Evolution for Optimization of Virtual Machine Resources in Smart City Cloud

  • Conference paper
  • First Online:
Computer Information Systems and Industrial Management (CISIM 2020)

Abstract

In a smart city, artificial intelligence tools support citizens and urban services. From the user point of view, smart applications should bring computing to the edge of the cloud, closer to citizens with short latency. However, from the cloud designer point of view, the trade-off between cost, energy and time criteria requires the Pareto solutions. Therefore, the proposed multi-criteria differential evolution can optimize virtual machine resources in smart city clouds to find compromises between preferences of citizens and designers. In this class of distributed computer systems, smart mobile devices share computing workload with the set of virtual machines that can be migrated among the nodes of the cloud. Finally, some numerical results are studied for the laboratory cloud GUT-WUT.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Agarwal, A., Raina, S.: Live migration of virtual machines in cloud. Int. J. Sci. Res. Publ. 2(6), 1–5 (2012)

    Google Scholar 

  2. Balicki, J., Balicka, H., Dryja, P., Tyszka, M.: Big data and the internet of things in edge computing for smart city. In: Saeed, K., Chaki, R., Janev, V. (eds.) CISIM 2019. LNCS, vol. 11703, pp. 99–109. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-28957-7_9

    Chapter  Google Scholar 

  3. Balicki, J., Korłub, W., Szymanski, J., Zakidalski, M.: Big data paradigm developed in volunteer grid system with genetic programming scheduler. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2014. LNCS (LNAI), vol. 8467, pp. 771–782. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-07173-2_66

    Chapter  Google Scholar 

  4. Balicki, J.: An adaptive quantum-based multiobjective evolutionary algorithm for efficient task assignment in distributed systems. In: Mastorakis, N., et al. (eds.) Recent Advances in Computer Engineering, 13th International Conference on Computers, Rhodes, Greece, pp. 417–422. WSEAS, Athens (2009)

    Google Scholar 

  5. Banerjee, S., Agarwal, N.: Analyzing collective behavior from blogs using swarm intelligence. Knowl. Inf. Syst. 33(3), 523–547 (2012). https://doi.org/10.1007/s10115-012-0512-y

    Article  Google Scholar 

  6. Batty, M., Axhausen, K., Giannotti, F., Pozdnoukhov, A., Bazzani, A., Wachowicz, M., et al.: Smart cities of the future. Eur. Phys. J. 214(1), 481–518 (2012). https://doi.org/10.1140/epjst/e2012-01703-3

    Article  Google Scholar 

  7. Biswas, M.I., Parr, G., McClean, S., Morrow, P., Scotney, B.: A practical evaluation in OpenStack live migration of VMs using 10 Gb/s interfaces. In: 2016 IEEE Symposium on Service-Oriented System Engineering (SOSE), pp. 346–351. IEEE (2016)

    Google Scholar 

  8. Błażewicz, J., Kovalyov, M., Węglarz, J.: Preemptable malleable task scheduling problem. IEEE Trans. Comput. 55(4), 486–490 (2006)

    Article  Google Scholar 

  9. Caragliu, A.: Del Bo, C., Nijkamp P.: Smart cities in Europe. Series Research Memoranda 0048. VU University Amsterdam, Faculty of Economics, Business Administration and Econometrics, Amsterdam (2009)

    Google Scholar 

  10. Cardoso, L.P., Mattos, D.M., Ferraz, L.H.G., Duarte, O.C.M., Pujolley, G.: An efficient energy-aware mechanism for virtual machine migration. In: Global Information Infrastructure and Networking Symposium, pp. 1–6. IEEE (2015)

    Google Scholar 

  11. Clohessy, T., Acton, T., Morgan L.: Smart city as a service (SCaaS): a future roadmap for e–government smart city cloud computing initiatives. In: 7th International Proceedings on Utility and Cloud Computing, pp. 836–841. IEEE/ACM (2014)

    Google Scholar 

  12. Comcute grid. http://comcute.eti.pg.gda.pl/. Accessed 17 Feb 2020

  13. Cordts, M., et al.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the Conference on Computer Vision and Pattern Recognition, pp. 1–12. IEEE (2016)

    Google Scholar 

  14. Curtis, S.: How Twitter will power the Internet of Things. http://www.telegraph.co.uk/technology/twitter/11181609/How-Twitter-will-power-the-Internet-of-Things.html. Accessed 17 Feb 2020

  15. Dhanoa, I.S., Khurmi, S.S.: Analyzing energy consumption during VM live migration. In: International Conference on Computing, Communication & Automation, pp. 584–588 (2015)

    Google Scholar 

  16. FixMyStreet Project. https://www.mysociety.org/projects/. Accessed 17 Feb 2020

  17. Galligan, S.D., O’Keeffe, J.: Big Data Helps City of Dublin Improves its Public Bus Transportation Network and Reduce Congestion. IBM Press (2013)

    Google Scholar 

  18. Gao-Yang, L., Ming-Guang L.: The summary of differential evolution algorithm and its improvements. In: 3rd International Proceedings on Advanced Computer Theory and Engineering (iCACTE), pp. 153–156 (2010)

    Google Scholar 

  19. Gea, T., Paradells, J., Lamarca, M., Roldan, D.: Smart cities as an application of internet of things: experiences and lessons learnt in Barcelona. In: 7th International Proceedings on Innovative Mobile and Internet Services in Ubiquitous Computing, pp. 552–557 (2013)

    Google Scholar 

  20. Guojun, L., Ming, Z., Fei, Y.: Large-scale social network analysis based on MapReduce. In: International Proceedings on Computational Aspects of Social Networks, pp. 487–490 (2010)

    Google Scholar 

  21. Komninos, N., Pallot, M., Schaffers, H.: Special issue on smart cities and the future internet in Europe. J. Knowl. Econ. 4, 1–134 (2013). https://doi.org/10.1007/s13132-012-0083-x

    Article  Google Scholar 

  22. Kuehne, H., Jhuang, H., Garrote, E., Poggio, T., Serre, T.: HMDB: a large video database for human motion recognition. In: Proceedings of the International Conference on Computer Vision, pp. 2556–2563. IEEE, Barcelona (2011)

    Google Scholar 

  23. Kumar, R., Prashar, T.: Performance analysis of load balancing algorithms in cloud computing. Int. J. Comput. Appl. 120(7) (2015)

    Google Scholar 

  24. Kwak, J., Kim, Y., Lee, J., Chong, S.: DREAM: dynamic resource and task allocation for energy minimization in mobile cloud systems. IEEE J. Sel. Areas Commun. 33(12), 2510–2523 (2015)

    Article  Google Scholar 

  25. Macmanus, R.: The Tweeting House: Twitter + Internet of Things. http://readwrite.com/2009/07/20/the_tweeting_house_twitter_internet_of_things. Accessed 17 Feb 2020

  26. Mashayekhy, L., Nejad, M.M., Grosu, D.: Physical machine resource management in clouds: a mechanism design approach. IEEE Trans. Cloud Comput. 3, 247–260 (2014)

    Article  Google Scholar 

  27. Nam, T., Pardo, T.A.: Conceptualizing smart city with dimensions of technology, people, and institutions. In: 12th International Proceedings on Digital Government Innovation in Challenging Times, pp. 282–291 (2011)

    Google Scholar 

  28. Naphade, M., Banavar, G., Harrison, C., Paraszczak, J., Morris, R.: Smarter cities and their innovation challenges. Computer 44(6), 32–39 (2011)

    Article  Google Scholar 

  29. Ning, H., Wang, Z.: Future internet of things architecture: like mankind neural system or social organization framework. IEEE Commun. Lett. 15(4), 461–463 (2011)

    Article  Google Scholar 

  30. Patel, V.J. Bheda, H.A.: An advanced survey on research ıssues of energy management in cloud computing. Int. J. Adv. Res. Comput. Sci. Softw. Eng. 4(1) (2014)

    Google Scholar 

  31. Schaffers, H., Komninos, N., Pallot, M.: Smart Cities as Innovation Ecosystems Sustained by the Future Internet. Fireball White Paper (2012)

    Google Scholar 

  32. Smartsantander. Future Internet Research & Experimentation. http://www.smartsantander.eu/. Accessed 17 Feb 2020

  33. Sutar, S.G., Mali, P.J., More, A.: Resource utilization enhancement through live virtual machine migration in cloud using ant colony optimization algorithm. Int. J. Speech Technol. 23, 79–85 (2020). https://doi.org/10.1007/s10772-020-09682-2

    Article  Google Scholar 

  34. Twardowski, B., Ryzko, D.: Multi–agent architecture for real–time big data processing. In: International Proceedings on Web Intelligence and Intelligent Agent Technologies, vol. 3, pp. 333–337 (2014)

    Google Scholar 

  35. Twitter. https://about.twitter.com/company. Accessed 17 Feb 2020

  36. Veeravalli, B., He, B.: Guest editors’ introduction: special issue on economics and market mechanisms for cloud computing. IEEE Trans. Cloud Comput. 3(3), 245–246 (2015)

    Article  Google Scholar 

  37. Wang, X., Yuen, C., Hassan, N. U., Wang, W., & Chen, T.: Migration-aware virtual machine placement for cloud data centers. In: Workshop on Cloud Computing Systems, Networks, and Applications. IEEE (2015)

    Google Scholar 

  38. Yang, C.T., Chuang, C.L., Liu, J.C., Chen, C.C., Chu, W.C.: Implementation of cloud infrastructure monitor platform with power saving method. In: 29th International Conference on Advanced Information Networking and Applications Workshops, pp. 223–228. IEEE (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jerzy Balicki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Balicki, J., Balicka, H., Dryja, P., Tyszka, M. (2020). Multi-criteria Differential Evolution for Optimization of Virtual Machine Resources in Smart City Cloud. In: Saeed, K., Dvorský, J. (eds) Computer Information Systems and Industrial Management. CISIM 2020. Lecture Notes in Computer Science(), vol 12133. Springer, Cham. https://doi.org/10.1007/978-3-030-47679-3_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-47679-3_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-47678-6

  • Online ISBN: 978-3-030-47679-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics