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Abstract. Hybrid systems are one of the most common mathemati-
cal models for Cyber-Physical Systems (CPSs). They combine discrete
dynamics represented by state machines or finite automata with continu-
ous behaviors represented by differential equations. The measurement of
continuous behaviors is performed by sensors. When these sensors have
a continuous access to these measurements, we call such model an Event-
Triggered model. The properties of this model are easier to prove, while
its implementation is difficult in practice. Therefore, it is preferable to
introduce a more realistic model, called Time-Triggered model, where
the sensors take periodic measurements. Contrary to Event-Triggered
models, Time-Triggered models are much easier to implement, but much
more difficult to verify. Based on the differential refinement logic (dRL),
a dynamic logic for refinement relations on hybrid systems, it is pos-
sible to prove that a Time-Triggered model refines an Event-Triggered
model. The major limitation of such logic is that it is not supported
by any prover. In this paper, we propose a correct-by-construction app-
roach that implements the reasoning on hybrid programs particularly the
reasoning of dRL in Event-B to take advantage of its associated tools.

Keywords: Cyber-Physical Systems · Hybrid systems · Event-B ·
Refinement · Differential refinement logic

1 Introduction

Recent progress in the industrial sector have allowed the development of a new
production model based on digital network architectures to give birth to a fourth
industrial revolution (“industry 4.0” or “industry of the future”). Cyber Physical
Systems (CPSs) [2] are one of the main technologies in this industry and form the
basis of future technologies. The domain of these systems has rapidly become a
source of innovation with applications in many sectors: health, transport, smart
grid, etc. This type of systems allows to connect the discrete virtual world and
the continuous physical world via a network of sensors and actuators. One of

This work was supported in part by the DISCONT project [1] funded by the French
National Research Agency (ANR).

c© Springer Nature Switzerland AG 2020
A. Raschke et al. (Eds.): ABZ 2020, LNCS 12071, pp. 139–154, 2020.
https://doi.org/10.1007/978-3-030-48077-6_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-48077-6_10&domain=pdf
http://orcid.org/0000-0003-0016-6898
https://doi.org/10.1007/978-3-030-48077-6_10


140 M. Afendi et al.

the most common architectures in CPSs is a discrete software controller that
represents the computation part and controls the physical part through a loop
involving sensors and actuators.

A common mathematical model for CPSs is that of hybrid systems that
combine discrete behavior represented by state machines or finite automata
with continuous behavior described by differential equations. The development
of techniques and tools to effectively design hybrid systems has drawn the atten-
tion of many researchers. Traditional approaches are based on simulation tools
like Matlab/Simulink or Stateflow. Since these tools are time-consuming and
produce results tainted with uncertainty, traditional approaches can be very
expensive and difficult to apply. To overcome these limitations, several formal
approaches have been proposed. These approaches can be grouped into two cat-
egories: model-checking-based approaches and proof-based approaches. Model-
checking-based approaches use hybrid automata to model hybrid systems and
algorithmic analysis methods to prove their safety. They are based on the calcu-
lation of the set of reachable states for hybrid automata. These approaches suffer
from the classical problems related to the state space explosion and boundedness
of the considered variables issues. Proof-based approaches use deductive verifica-
tion to prove the properties of hybrid systems. One of the strong points of these
approaches is that they support the description of any kind of hybrid systems.
However, they require significant effort and a high expertise in modelling and
proof phases. This is the main reason why these approaches do not yet scale to
industrial applications.

In CPSs, the measurement of continuous behaviors is performed by sensors.
Ideally sensors have a continuous access to these measurements, this can be cap-
tured by an abstract model of CPSs, called Event-Triggered system by Kopetz
in [3]. However, implementing such models is difficult in practice. Therefore, it is
preferable to introduce a more realistic model, called Time-Triggered system in
[3], where the sensors take periodic measurements. Contrary to Event-Triggered
models, properties on Time-Triggered models are difficult to verify. Platzer et al.
[4,5] use this approach to model hybrid systems. They have proved that a Time-
Triggered model can be a refinement of an Event-Triggered model, by using an
extension of the differential dynamic logic (dL), called the differential refinement
logic (dRL). However dRL is not supported by any prover and dRL formulas can
only be manually proved, which heavily restricts its use, especially in an indus-
trial context. In this paper we propose an approach to model Event-Triggered
systems and Time-Triggered systems in Event-B to take advantage of its well-
defined refinement process and of its support tools. We also reused the work
proposed in [6] that allows to model differential equations in Event-B.

This paper is organised as follows. Section 2 briefly describes dL, dRL and
Event-B. Section 3 presents a state of the art of some proof based-approaches
for CPS modelling. Section 4 presents Event and Time-Triggered systems and
their modelling in dRL. Section 5 then introduces our proposed approach and
discusses the difference between modelling Event and Time-Triggered systems
in dRL and Event-B. Finally, Sect. 6 concludes and presents some future work.
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2 Background

2.1 Differential Dynamic Logic dL
This section describes a first-order dynamic logic in the domain of real (IR)
introduced by A. Platzer to specify hybrid systems and verify their correctness
using its associated proof calculus [4]. dL formulas are built using logical sym-
bols of first-order logic and the modalities [ ] (Box-modality) and 〈 〉 (Diamond-
modality). Formula [α]φ is true iff after all runs of the hybrid program α, formula
φ holds. 〈α〉φ is true iff there is at least one run of the hybrid program α, after
which formula φ holds. The major advantage of dL is its ability to handle differ-
ential equations, even those with non-polynomial solutions. Moreover, dL and
its associated proof calculus are supported by two automatic formal verification
tools, KeYmaera [7] and its successor KeYmaera X [8].

In dL, hybrid systems are given operationally as hybrid programs (HPs).
These latter describe both discrete and continuous behaviors of hybrid systems
using sequential composition (;), non-deterministic choice (∪), non-deterministic
repetition (∗), discrete assignments (:=), continuous evolution (′), etc. Most HPs
are defined using the notation, (ctrl; plant)∗, where ctrl denotes the execution
of the controller (discrete evolution), followed by the physical part plant (con-
tinuous evolution). This sequence is non-deterministically repeated as denoted
with the star (*).

Finally, in order to establish a safety property, safeReq, for a system, a typical
formula expressing safety relative to initial conditions needs to be proved, init →
[(ctrl; plant)∗](safeReq) that means: if the initial conditions (init) hold, then,
after all runs of the hybrid program safeReq holds.

2.2 Differential Refinement Logic dRL
dRL is a logic with first-class support for refinement relations on hybrid systems
[5]. It extends dL by introducing a refinement operator (≤) for HPs. In addition
to dL formulas, dRL introduces formulas of the form α ≤ β, α refines β, with α
and β denoting HPs. According to [5], formula α ≤ β is true in a state s iff all
states reachable from s by following the transitions of α could also be reached
from state s by following transitions of β.

dRL preserves the safety properties of refined hybrid programs by showing
that if α ≤ β and [β]φ, then the formula φ is true in all states reachable from s by
following the transitions of α ([α]φ). There is a similar rule for diamond modal-
ities (〈 〉), which states that if α refines β, and there is at least one transition on
α to a state where φ is true, then 〈β〉φ is true. Moreover, dRL establishes that
a Time-Triggered system refines an Event-Triggered system using its associated
proof calculus (Sect. 4).

2.3 Event-B

Event-B [9] is a formal method based on set theory, first-order logic and predicate
logic. An Event-B model is composed of a set of machines and contexts. An
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Event-B context consists of sets and constants with their axioms. An Event-B
machine represents the dynamic behavior of a given system, and it may see one
or more Event-B contexts. To any Event-B model, a set of proof obligations
(POs) is associated. These POs must be proved to verify the correctness of a
given Event-B model. They can be automatically generated using for example the
Rodin platform [10], which is an Eclipse-based IDE for Event-B. This platform
allows to add new features as Eclipse plug-ins. For example, the Theory plug-
in [11] is a Rodin extension that allows to define new data types like REAL,
new operators, etc. Event-B has a key feature that consists in using abstract
modelling to represent the abstract behavior of a given system and the refinement
to demonstrate compliance between an abstract model and a concrete one.

3 State of the Art

In this section, we focus on proof-based approaches defined to specify and verify
hybrid systems using Event-B, the dRL approach will be discussed in Sect. 4. We
briefly describe three main approaches. The approach presented in [12] proposes
a new formal method, called Hybrid Event-B, to add continuous aspects to
traditional discrete Event-B. It defines two kinds of events: mode events and
pliant events. mode events represent the traditional discrete Event-B events.
pliant events specify the continuous evolution of continuous measurements. As
dRL, Hybrid Event-B is not supported by any prover.

The authors of [13] propose an approach supported by the Rodin toolset
to model hybrid systems using continuous functions over real intervals. Pre-
serving the properties of these functions is the key for ensuring the correction
of refined machines. This approach uses the Event-B refinement to reduce the
non-determinism in continuous behaviors and introduce periodic control.

Finally, the approach proposed by Dupont et al. in [6] uses the Theory plug-in
of Event-B to define theories that handle continuous aspects of hybrid systems.
The behavior of CPSs is specified by the following three Event-B models:

– System model is used to describe the continuous evolution of the physical
part of a hybrid system. Its machine contains two events:

• the Progress event models the continuous evolution of time by using a pos-
itive real variable t ∈ (TIME = RRealPlus)1. The lt symbol corresponds
to the operator (<) in the RReal theory [6].

Progress
THEN act1: t : | t′ ∈ TIME ∧ (t 
→ t′ ∈ lt) END

• the Behave event models the physical part’s evolution represented by the
physical state variable plantV . While modelling a car, plantV will be
replaced by the car’s position p and the car’s velocity v. plantV evolves
according to the differential equation e ∈ DE(S = RReal ∗ RReal)2

1 RRealPlus represents IR+ in the RReal theory developped by Dupont et al.
2 RReal represents IR in the RReal theory developped by Dupont et al.
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defined as a parameter of the Progress event, where DE(S) is a set of
differential equations defined on S. This differential equation must have
a solution in the interval [t,∞[ that is represented by Guard grd2.

Behave
ANY e
WHERE

grd1: e ∈ DE(S)
grd2: Solvable(Closed2Infinity(t), e)

THEN
act1: plantV : | plantV ′ ∈ TIME → S ∧

AppendSolutionBAP (e, TIME, Closed2Open(Rzero, t),
Closed2Infinity(t), plantV, plantV ′)

END

– State System model refines the previous model by adding the evolution of
the discrete part (the controller). It introduces a new variable named x s to
model the possible states of the controller. It also introduces a new event,
named Transition, to update the controller’s state by assigning a non deter-
ministic value to x s. The possible values that can be assigned to this variable
are defined in the associated context as elements of a set STATES defined in
the same context.

– Controlled System model refines the State System model by adding two
new events that allow the interaction between the physical part and the dis-
crete part:

• Sense event allows to modify the controller’s state according to the phys-
ical part’s state. It introduces a parameter p which depends on x s, t and
plantV (t) (p ∈ P (STATES×TIME×S)). This parameter allows to define
the system safety envelope according to its discrete state.

• Actuate event refines the Behave event by adding a constraint on the
controller’s state. This constraint is represented by the following formulas:
s ⊆ STATES and x s ∈ STATES.

4 Event and Time-Triggered Systems

In order to design a model that better corresponds to real CPSs it is preferable
to start with an abstract one, called Event-Triggered model, where the controller
interrupts the physical part when a particular event occurs, and then introduce
a more realistic model, called Time-Triggered model, where the controller inter-
rupts periodically the physical part [3]. Event-Triggered models describe an ideal
behavior where the time is continuous and the sensors have continuous access
to continuous measurements which is not always possible in practice. Time-
Triggered models describe a more realistic behavior where the sensors take peri-
odic measurements. Therefore, the controller of a Time-Triggered system must
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make a choice that will be safe until the next sensor’s update, which makes this
type of systems difficult to prove compared to Event-Triggered systems.

dRL allows to specify and prove that a Time-Triggered system refines an
Event-Triggered system. It introduces two generic templates [5], Model 1 and
Model 2, to model and prove these two types of systems. The control part of
these two generic templates has only two modes: the normal mode which is
triggered if the system safety envelope, denoted safe, is satisfied, and the evade
mode which is triggered otherwise. As already mentioned, the major limitation
of dRL is that it is not supported by any prover. This limitation represents a
strong restriction on its application to more complex hybrid systems. This paper
proposes to deal with this restriction through the use of Event-B and its support
tools.

4.1 Event-Triggered Model

Model 1: Event-triggered Generic Model

event∗ ≡ (ctrlEv; plantEv)∗ (1.1)
ctrlEv ≡ (ctrlV := evade value) ∪ (ctrlV := ∗; ?safe(plantV )) (1.2)

plantEv ≡ t := 0; plantV0 := plantV ;
(plantV ′ = f evol(ctrlV ), t′ = 1 & evt trig(plantV )
∧ dom evol(plantV )) (1.3)
∪ (plantV ′ = f evol(ctrlV ), t′ = 1 & ∼ evt trig(plantV )
∧ dom evol(plantV )) (1.4)

where:
ctrlV : the control variable (acceleration in the case of a car).
plantV : the state variable of the system.
safe(plantV ): defines the system safety envelope. It is calculated from the
safety requirement that the system must satisfy.

plantV ′ = f evol(ctrlV ): defines the system ODE that describe the
continuous evolution of the system.

evt trig(plantV ): the predicate that defines the boundary of the safety
envelope. When this latter becomes false, the controller triggers the evade
mode. It must define a closed domain.

∼ evt trig(plantV ) : topological closure of the complement
of evt trig(plantV ).

dom evol(plantV ): defines the evolution domain of the system. It is a set of
constraints on the state variable.

plantV0: represents the initial value of plantV .

N.B: the variables t and plantV0 have no effect on the state of this model.
They will be used in the second model.
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Model 1 represents the generic model associated with a controller triggered
by events. When the formula safe is satisfied, the system can evolve continu-
ously according to formula (1.3) until it reaches the boundary of the domain
evt trig(plantV ). Once the system reaches the boundary of this domain, the
controller must then switch to the evade mode by affecting a deterministic value
evade value to the control variable (ctrlV ). After the switch of the controller
to the evade mode, the system no longer satisfies the formula safe. Therefore,
it can no longer evolve in the domain evt trig(plantV ) that’s why dRL defines
formula (1.4). This latter allows the system to evolve continuously when it is in
the evade mode. To prove the safety of this model, dRL provides the following
proof rule where Γ represents other assumptions not affected by the program
event:

evt trig(plantV ) ∧ Γ � [event](evt trig(plantV ) ∧ Γ )

This proof states that Model 1 is safe if its associated hybrid program event
always satisfies the loop invariant evt trig(plantV ) which includes the formula
safe(plantV ).

4.2 Time-Triggered Model

Model 2: Time-triggered generic model

time∗ ≡ (ctrlt; plantt)∗ (2.1)
ctrlt ≡ (ctrlV := evade value)

∪ (ctrlV := ∗; ?safeε(plantV, ctrlV )) (2.2)
plantt ≡ t := 0; plantV0 := plantV ; (plantV ′ = f evol(ctrlV ),

t′ = 1 & t ≤ ε ∧ dom evol(plantV )) (2.3)

where
ε: maximum time between two sensors updates.
t: allows to know if the duration ε is reached or not.

Model 2 represents the generic model associated with a Time-Triggered system.
The controller of such system reacts at least every ε seconds. To express this
constraint, dRL replaces formulas (1.3) and (1.4) by a single one (2.3). Formula
safe is also replaced by formula safeε, which depends on both the current choice
of ctrlV and the time duration ε, in addition to the current state plantV , in order
to guarantee that the controller will make a choice that will be safe for up to ε
time. To prove that Model 2 satisfies a safety property φ, dRL has introduced
the following proof rule ([≤]) where Δ represents other obligations in the context
not affected by the proof rule.
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Γ � [event∗]φ,Δ Γ � (time∗ ≤ event∗),Δ
Γ � [time∗]φ,Δ

[≤]

This proof consists of two sub-goals: the first one is to prove that Model 1
satisfies the system safety property φ, and the second aims at verifying that
Model 2 refines Model 1.

4.3 Time-Triggered Model Refines Event-Triggered Model

To prove that a Time-Triggered system refines an Event-Triggered system, dRL
provides three proof obligations:

– PO 1: evt trig(plantV ) ∧ Γ ∧ safeε(plantV, ¯ctrlV ) � safe(plantV )

where:
¯ctrlV : represents a non-deterministic choice of the control variable.

This proof expresses that the safety envelope of Model 2 implies that of Model
1, which means that the discrete controller refines the continuous one.

– PO 2: evt trig( ¯plantV0) ∧ Γ ∧ safeε( ¯plantV0, ¯ctrlV ) ∧ 0 ≤ t ≤ ε
∧ dom evol( ¯plantV ) ∧ ¯plantV = S ¯plantV0, ¯ctrlV (t) � evt trig( ¯plantV )

where:
¯plantV0: set of physical state variables values at instant t = 0.
¯plantV : set of physical state variables values at instant t.

S ¯plantV0, ¯ctrlV (t): solutions of the ODE associated with plantV0, given a
control variable choice ¯ctrlV .

This proof expresses that the non-deterministic choice of ctrlV := ∗
expressed by ¯ctrlV guarantees that the system will not cross the boundary
of evt trig(plantV ) within time ε.

– PO 3: evt trig( ¯plantV0) ∧ Γ ∧ 0 ≤ t ≤ ε ∧ dom evol( ¯plantV )
∧ ¯plantV = S ¯plantV0,evade value(t) � evt trig( ¯plantV )

This proof is similar to the previous one except that here the control choice
is deterministic ctrlV := evade value.

5 Modelling Hybrid Programs with Event-B

The objective of the DISCONT project [1] is to elaborate a correct-by-
construction method, based on Event-B, to specify hybrid systems models. Two
approaches are considered. The first one, developed by Dupont et al. [6], is based
on a translation of hybrid automata in Event-B extended by theories that handle
differential equations and continuous functions (derivation, Lipschitz condition,
etc.). In our approach we propose to model the high-level structure of hybrid
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programs, (ctrl;plant)*, in Event-B, and more precisely the generic templates
defined for modelling Event and Time-Triggered systems in dRL.

One of our objectives is to use the Event-B refinement and its associated tools
to demonstrate the compliance between these two models, and also compare the
refinement proof obligations generated in Event-B with those provided by dRL.
The approach consists of three models as depicted in Fig. 1 where System M
and System Ctx are those of [6]. We also reuse the Event-B theories that handle
continuous aspects of hybrid systems. The whole models can be downloaded
from: https://cloud.lacl.fr/index.php/s/K75Lt28ApPbkY7z.

Fig. 1. Structure of the Event-B specification.

5.1 Event and Time-Triggered in Event-B

Event-Triggered Model is a generic model designed to specify and prove
Event-Triggered systems in Event-B. It is based on the first generic template of
dRL, Model 1. As we mentioned above, dRL models an Event-triggered system
by adding the constraint evt trig(plantV ) to the system evolution domain. Since
Event-B models the transitions between discrete states as events, we do not need
to use this constraint in Event-B. Moreover, through the use of Event-B, we can
see the different transitions of a given system.

The Event-Triggered model is composed of an Event-B context named Event-
Triggered Ctx and an Event-B machine named EventTriggered M. EventTrig-
gered Ctx defines a set of constants and axioms required to model an Event-
Triggered system, such as the formula safe that represents the safety envelope
for the modeled system. As in dRL, the formula safe depends on the current
physical state variable as well as the control variable since it may contain some
limits on how this latter may be set. The domain of this formula must be included
in that of evt trig(plantV ) formula. Moreover, safe must be initially satisfied. In
that case, proving the safety of an Event-Triggered model consists in ensuring
that the specific choice of the evade mode is safe. Machine EventTriggered M
refines that of the abstract model System by adding two new variables:

https://cloud.lacl.fr/index.php/s/K75Lt28ApPbkY7z


148 M. Afendi et al.

– ctrlV represents the control variable and belongs to RReal. The current value
of this variable corresponds to the current controller’s state.

– exec is a flag used to model the alternation between the control part and
the physical part as represented in the high-level structure of hybrid pro-
grams, (ctrl; plant)∗. Therefore, exec can take two values ctrl and plant. In
Event-B, the time must be explicitly handled. To be sure that this explicit
time will only be updated after the execution of the controller and the phys-
ical part, we added a third value, prg, to exec. Moreover, we refined the
Progress event of the Machine System M (page 4) to add the constraint
exec = prg as a guard and exec := ctrl as an action. Therefore, our model
follows the following structure: init; (ctrl; plant; prg)∗, where init represents
the INITIALISATION event.

To model the evolution of the physical part, we have defined the Plant event.
This latter refines the Behave event by replacing the abstract differential equa-
tion e with that defined for a function denoted f evol plantV in order to model
plantV ′ = f evol(ctrlV ). The function f evol plantV describes the evolution of
the state variable plantV according to the system discrete state.

Plant
REFINES

Behave
WHERE

grd1: ode(f evol plantV(ctrlV ), plantV (t), t) ∈ DE(S)
grd2: Solvable(Closed2Infinity(t), ode(f evol plantV(ctrlV ), plantV (t), t))
grd3: exec = plant

WITH
e: e = ode(f evol plantV(ctrlV ), plantV (t), t)

THEN
act1: plantV : | plantV ′ ∈ (TIME → S) ∧

AppendSolutionBAP (ode(f evol plantV(ctrlV ), plantV (t), t),
TIME, Closed2Open(Rzero, t), Closed2Infinity(t), plantV, plantV ′)

act2: exec := prg
END

Regarding the evolution of the control part, we have added two new events:

– Ctrl normal event representing the normal mode. It is triggered when it is
the controller’s turn (exec = ctrl) and the formula safe is true. It assigns a
non-deterministic value, defined in the ANY clause, to the control variable
ctrlV and gives the turn to the physical part (exec := plant).

– Ctrl evade event representing the evade mode. It assigns the parameter
evade value to the control variable ctrlV and gives the turn to the physi-
cal part (exec := plant). This event can be triggered even if the system has
not yet reached the boundary of evt trig(plantV ), i.e. the system still satis-
fies the formula safe. However, we keep the guarantee that it will be triggered
exactly when the system reaches the boundary of evt trig(plantV ) since the
controller is continuous.
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Ctrl normal
ANY nrml value
WHERE

grd1: nrml value ∈ RReal
grd2: exec = ctrl
grd3: safe(plantV (t) 
→

nrml value) = TRUE
THEN

act1: ctrlV := nrml value
act2: exec := plant

END

Ctrl evade
ANY evade value
WHERE

grd1: exec = ctrl
grd2: evade value ∈ RReal

THEN
act1: ctrlV := evade value
act2: exec := plant

END

Time-Triggered Model refines the previous model to get a system corre-
sponding to that described by Model 2. As mentioned in the previous section,
the sensors of a Time-Triggered system take periodic measurements of physi-
cal state variables and its controller executes each time those sensors updates
are taken. Moreover, the longest time between sensors updates is bounded by a
symbolic duration named ε. Therefore, the controller can execute at least every
ε time. For this purpose, we have calibrated a new variable named d (variable t
in dRL) to know whether the duration ε is reached or not. This variable is reset
(set to Rzero) before each execution of the physical part and evolves according
to a function f evol d defined in the associated context. We have also added
the constraint d(t′) ≤ ε to the first action of the Progress event to be sure
that the sensors updates occurs at least every ε. Since the controller of a Time-
Triggered system must make a choice that will be safe for up to ε time, we
defined a new safety envelope named safeEpsilon (safeε(plantV, ctrlV ) in dRL).
As in dRL, we have replaced safe with safeEpsilon by defining a new event
named Ctrl normal time. This latter refines the Ctrl normal event and is trig-
gered when a given value, nrml value, satisfies the formula safeEpsilon. In that
case, we assign this value to ctrlV and give the turn to the physical part.

5.2 Application

To apply our approach to a concrete system, we define two concrete models,
Concrete System Event-triggered model and Concrete System Time-triggered
model. The first model refines the Event-Triggered model through replacing
plantV by the system physical state variables, defining the system safety proper-
ties as invariants in addition to the associated evolution function f evol plantV ,
then the formula safe is instanciated to define the system safety envelope. The
second model, can either refine the first one or the Time-Triggered model. If
we choose the first alternative, the refined model will then inherit the system
safety properties but on the other hand we must add the notion of control period
epsilon.
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5.3 Proof of Refinement

In Event-B, two proof obligations are generated to prove that a concrete Event-B
machine refines an abstract one:

– Guard strengthening (GRD): ensures that a concrete guard is stronger than
the corresponding abstract one.

– Action simulation (SIM): ensures that each concrete action is not contradic-
tory to the corresponding abstract one.

As mentioned earlier, we replaced the safety envelope formula safe by the formula
safeEpsilon in the Ctrl normal time event. In this case, the following Guard
strengthening (GRD) proof obligation has been generated:

(exec = ctrl ∧ safeEpsilon(plantV (t) 
→ nrml value) = TRUE)
⇒ safe(plantV (t)) = TRUE

To prove that the concrete machine, TimeTriggered M, refines the abstract
one, EventTriggered M, we must prove that, during a control period ε, the
safety formula safeEpsilon, defined in the concrete model, implies the safety
formula safe defined in the abstract one. This proof is similar to the PO 1 pro-
vided by dRL. PO 2 and PO 3 are not generated as refinement POs by the
proof obligation generator of Event-B, though they are needed to prove the
refinement relation between our two generic models, Time-Triggered model and
Event-Triggered model. Therefore, they must be added manually as Event-B
proof obligations. Since we model the evolution of the physical state variables
using a single event, Plant in the Event-Triggered model and Plant time in the
Time-Triggered model, we will then replace the equations of the dRL POs,

¯plantV = S ¯plantV0, ¯ctrlV (t) and ¯plantV = S ¯plantV0,evade value(t) by the guard
exec = prg. init represents the initial conditions of the modeled system and
plantV(t0) represents the initial value of the physical state variable plantV . In
Event-B, the proof obligations are as follows:

– PO 2:

safeEpsilon(plantV (t0) 
→ nrml value) = TRUE ∧ evt trig(plantV (t0))
∧ init ∧ (Rzero 
→ t ∈ leq) ∧ (t 
→ epsilon ∈ leq) ∧ exec = prg

⇒ evt trig(plantV )

– PO 3:

evt trig(plantV (t0)) ∧ init ∧ (Rzero 
→ t ∈ leq) ∧ (t 
→ epsilon ∈ leq)
∧ exec = prg ⇒ evt trig(plantV )

These two proof goals are based on the safety envelope of the system and the
choices of the control variable. When the safety envelope of the system is satisfied,
the controller can non-deterministically choose between the normal mode or the
evade mode. In the case of a Event-Triggered system, we have the guarantee
that the controller is able to switch to the evade mode exactly when the safety
envelope is no longer satisfied. While in a Time-Triggered system, we must prove
that nrml value and evade value guarantee that the system will not exceed the
domain of the safety envelope within time ε.
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5.4 Case Study

To validate our approach, we chose the Stop Sign case study [14] which deals
with a stop sign controller whose objective is to ensure the stopping of a car
before a stop signal SP . The control strategy is to adjust the velocity of the car
by accelerating or braking, without ever backing down. The continuous behavior
of this system is modeled by the position and the velocity of the car specified
respectively by the state variables p and v, as well as its acceleration represented
by the control variable ctrlV . This continuous behavior evolves according to
linear differential equations, p′ = v, v′ = ctrlV ≡ (dp

dt = v, dv
dt = ctrlV ), which

describe the evolution of the position and the velocity over time. The system can
behave according to the following two discrete states: State accelerate and State
braking. State accelerate is triggered when the car is very far from the stop signal
SP . In this case, the car velocity can evolve according to a non-deterministic
value assigned to the control variable ctrlV . This value must never exceed the
physical limits of the car expressed by A (maximum limit of acceleration) and
B (maximum limit of braking). State braking is triggered when the car is very
close to the stop signal SP . In this case, we must decrease the car velocity by
assigning −B to ctrlV . To model this system using our approach, we followed
the schema depicted in Fig. 2. The whole models of this development can be
downloaded from https://cloud.lacl.fr/index.php/s/aiKiPxkrfmWpakR.

Fig. 2. Stop sign case study development schema.

Machine Car Event M refines Machine EventTriggered M through replacing the
generic state variable plantV by the physical state variables associated with
the Stop sign case study, p and v. This replacement is done using the oper-
ator bind defined in the differential equations theory [6]. The physical part
is modeled by the Plant event car event. This latter refines the Plant event
by adding a witness that replaces the evolution of the generic state variable
plantV by the evolution of the position p and the velocity v represented by
the f evol plantV defined in the associated context. State accelerate is mod-
eled using the Ctrl acceleration car event that refines the Ctrl normal event.

https://cloud.lacl.fr/index.php/s/aiKiPxkrfmWpakR
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State braking is modeled through replacing the value evade value by −B in the
Ctrl evade event.

Machine Car Time M refines Machine Car Event M in order to preserve
the system safety property, p ≤ SP and 0 ≤ v. If we prove that safeT ime
implies safe, and the Car-Event-Triggered model satisfies the property p ≤ SP ,
so we can say that the Car-Event-Triggered model also satisfies this property.
Car Time M is based on the Machine TimeTriggered M, therefore we added the
variable d and its evolution.

To prove that Car Time M refines Car Event M we must prove the three
associated POs presented in Sect. 5.3. As we mentioned above, the choice of
the parameters nrml value and evade value is the key to prove the safety of the
system which can be done by using external mathematical tools for a parametric
analysis since the differential equation of the Stop Sign case study is linear.

5.5 Comparing Event-B Refinement with Differential Refinement
Logic

Type of Refinement. Event-B refinement is based on the execution traces
starting from the initial state. Therefore, to prove that a concrete Event-B
machine refines an abstract one, we have to establish that the set of execu-
tion traces of the concrete one is included in that corresponding to the abstract
one. The refinement of dRL is based on reachable states. In hybrid automata
and hybrid programs, a state is defined by a couple (x s, plantV ) composed of
the current discrete state x s and the current value of the continuous variable
plantV . Therefore, to prove that a hybrid program α refines another hybrid pro-
gram β (α ≤ β), we have to establish that the set of reachable states from a
state s following the transitions of α is included in the set of reachable states
from the same state s following some transitions of β.

Both Event-B refinement and dRL allow preserving the safety properties of
the refined model. This is ensured in dRL through combining refinement relations
and modalities. Despite the several features of dRL’s refinement, computing
reachable states for non linear system requires solving non-linear real arithmetic
problems which is difficult in general [15]. Moreover, dRL refinement does not
preserve the safety properties on the traces, but it is less constrained than the
Event-B refinement.

Proofs Complexity. As we mentioned earlier, dRL has introduced a refine-
ment strategy based on comparing reachable states for hybrid programs. Using
this refinement strategy, one can start with an ideal system where the controller
has continuous control over the system behavior (Event-Triggered system), then
introduces a more realistic system where the controller interrupts the physi-
cal part at least every ε time (Time-Triggered system). The main advantage
of dRL is that it uses differential equations to describe the continuous evolu-
tion of a given hybrid system by employing differential invariants, differential
cuts, and differential refinement techniques. Moreover, the refinement relation
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between Time and Event-Triggered systems have been successfully proved using
the dRL’s refinement proof rules. Despite these advantages, dRL is not sup-
ported by any prover, which makes the proofs difficult to achieve in the case
of complex systems especially for systems with more than two modes. Through
using Event-B, we can overcome this limitation since its support tools aid in dis-
charging proof obligations either automatically or with the interactive prover.
Therefore using our approach, we can model an hybrid system with more than
two modes.

The major limitation in using Event-B to model and verify hybrid systems
is the absence of support for the continuous aspects of CPSs, such as continuous
time and differential equations. As we mentioned, the approach proposed in
[6] has tried to overcome this limitation by defining an Event-B theory that
includes different kinds of differential equations. Using the abstract model of this
approach, it becomes possible to represent the reasoning on hybrid programs in
Event-B.

6 Conclusion and Future Work

In this paper, we have presented a proof-based approach that uses Event-B
and its refinement technique to specify and verify Event-Triggered systems and
Time-Triggered systems. We have defined two generic templates for these sys-
tems, directly inspired from the dRL specification, that represent hybrid systems
as hybrid programs. dRL proof obligations have been defined to establish the
refinement of the Event-Triggered template by the Time-Triggered template.
Then we have compared the Event-B refinement with the dRL refinement and
the generated POs. This led us to define new refinement POs in Event-B. One
of the main advantages of Event-B is its support tools (provers, model-checkers,
. . . ) to discharge POs, contrary to dRL.

To demonstrate the usability of our approach, we have experimented it on
a Stop Sign case study. In this case study, the differential equations that repre-
sent the evolution of the physical part are linear and can be easily solved. To
handle more difficult differential equations we need to use an external tool like
Mathematica [16], a symbolic mathematical computation system. Moreover, our
approach is still in the abstract level where all transitions are instantaneous. It
does not take into account the duration between the sending of continuous mea-
surements by the sensors and their processing by the controller as well as the
duration between the sending of actions by the controller and their execution.
As future work, we plan to define a refinement of the Time-Triggered model to
model these durations. We also plan to integrate Mathematica as a back-end
tool in the Rodin platform to resolve differential equations.
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prove hybrid systems with KeYmaera: a tutorial on safety. Int. J. Softw. Tools
Technol. Transf. 18(1), 67–91 (2015). https://doi.org/10.1007/s10009-015-0367-0

15. Chen, X.: Reachability analysis of non-linear hybrid systems using Taylor models.
Ph.D. thesis, Fachgruppe Informatik, RWTH Aachen University (2015)

16. Wolfram, S.: The Mathematica Book, 5th edn. Wolfram Media, Champaign (2003)

https://doi.org/10.1007/BFb0024530
https://doi.org/10.1007/s10817-008-9103-8
https://doi.org/10.1007/978-3-319-91271-4_11
https://doi.org/10.1007/978-3-540-71070-7_15
https://doi.org/10.1007/978-3-540-71070-7_15
https://doi.org/10.1007/978-3-319-21401-6_36
https://doi.org/10.1007/s10009-010-0145-y
https://doi.org/10.1007/s10009-015-0367-0

	Modelling Hybrid Programs with Event-B
	1 Introduction
	2 Background
	2.1 Differential Dynamic Logic dL
	2.2 Differential Refinement Logic dRL
	2.3 Event-B

	3 State of the Art
	4 Event and Time-Triggered Systems
	4.1 Event-Triggered Model
	4.2 Time-Triggered Model
	4.3 Time-Triggered Model Refines Event-Triggered Model

	5 Modelling Hybrid Programs with Event-B
	5.1 Event and Time-Triggered in Event-B
	5.2 Application
	5.3 Proof of Refinement
	5.4 Case Study
	5.5 Comparing Event-B Refinement with Differential Refinement Logic

	6 Conclusion and Future Work
	References




