Skip to main content

MeTree: A Metric Spatial Index

  • Conference paper
  • First Online:
Computer Science – CACIC 2019 (CACIC 2019)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1184))

Included in the following conference series:

  • 386 Accesses

Abstract

Metric Spaces model databases allowing similarity searching. e.g., looking for objects similar to a given one. Spatial databases are used to store and efficiently retrieve data with some spatial attribute. Some applications need to search both by similarity and space at the same time. This kind of queries cannot be solved efficiently using spatial o metric indexes separately. Recently, Metric Spatial queries were formalized and a new access method, the MeTree, was proposed to solve them. In this article, we present new experiments that show the performance of this index.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chávez, E., Navarro, G., Baeza-Yates, R., Marroquín, J.L.: Searching in metric spaces. ACM Comput. Surv. 33(3), 273–321 (2001)

    Article  Google Scholar 

  2. Li, Z., Lee, K.C.K., Zheng, B., Lee, W.-C., Lee, D.L., Wang, X.: IR-tree: an efficient index for geographic document search. IEEE Trans. Knowl. Data Eng. 23, 585–599 (2011)

    Article  Google Scholar 

  3. Planas, A., Pascal, A., Herrera, N.: Consultas Métrico Espaciales. XXV Congreso Argentino de Ciencias de la Computación. Universidad Nacional de Río Cuarto (2019)

    Google Scholar 

  4. Chavez, E., Navarro, G.: A compact space decomposition for effective metric indexing. Pattern Recogn. Lett. 26(9), 1363–1376 (2005)

    Article  Google Scholar 

  5. Ciaccia, P., Patella, M., Zezula, P.: M-tree: an efficient access method for similarity search in metric spaces. In: VLDB, pp. 426–435 (1997)

    Google Scholar 

  6. Dohnal, V., Gennaro, C., Savino, P., Zezula, P.: D-index: distance searching index for metric data sets. Multimedia Tools Appl. 21(1), 9–33 (2003). https://doi.org/10.1023/A:1025026030880

    Article  Google Scholar 

  7. Traina, C., Traina, A., Seeger, B., Faloutsos, C.: Slim-trees: high performance metric trees minimizing overlap between nodes. In: Zaniolo, C., Lockemann, P.C., Scholl, M.H., Grust, T. (eds.) EDBT 2000. LNCS, vol. 1777, pp. 51–65. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-46439-5_4

    Chapter  Google Scholar 

  8. Burkhard, W., Keller, R.: Some approaches to best-match file searching. Commun. ACM 16(4), 230–236 (1973)

    Article  Google Scholar 

  9. Traina, C., Filho, R.F.S., Traina, A.J.M., et al.: The Omni-family of all-purpose access methods: a simple and effective way to make similarity search more efficient. VLDB J. 16(4), 483–505 (2007). https://doi.org/10.1007/s00778-005-0178-0

    Article  Google Scholar 

  10. Mico, L., Oncina, J., Carrasco, R.C.: A fast branch & bound nearest neighbour classifier in metric spaces. Pattern Recogn. Lett. 17(7), 731–739 (1996)

    Article  Google Scholar 

  11. Yianilos, P.N.: Data structures and algorithms for nearest neighbor search in general metric spaces. In: SODA, pp. 311–321 (1993)

    Google Scholar 

  12. Kalantari, I., McDonald, G.: A data structure and an algorithm for the nearest point problem. IEEE Trans. Software Eng. 9(5), 631–634 (1983)

    Article  Google Scholar 

  13. Noltemeier, H., Verbarg, K., Zirkelbach, C.: Monotonous Bisector* Trees—a tool for efficient partitioning of complex scenes of geometric objects. In: Monien, B., Ottmann, T. (eds.) Data structures and efficient algorithms. LNCS, vol. 594, pp. 186–203. Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-55488-2_27

    Chapter  MATH  Google Scholar 

  14. Uhlmann, J.K.: Satisfying general proximity/similarity queries with metric trees. Inf. Process. Lett. 40(4), 175–179 (1991)

    Article  Google Scholar 

  15. Brin, S.: Near neighbor search in large metric spaces. In: VLDB, pp. 574–584 (1995)

    Google Scholar 

  16. Navarro, G., Paredes, R.U.: Fully dynamic metric access methods based on hyperplane partitioning. Inf. Syst. 36(4), 734–747 (2011)

    Article  Google Scholar 

  17. Navarro, G.: Searching in metric spaces by spatial approximation. VLDB J. 11(1), 28–46 (2002). https://doi.org/10.1007/s007780200060

    Article  Google Scholar 

  18. Britos, L., Printista, A.M., Reyes, N.: DSACL+-tree: a dynamic data structure for similarity search in secondary memory. In: Navarro, G., Pestov, V. (eds.) SISAP 2012. LNCS, vol. 7404, pp. 116–131. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32153-5_9

    Chapter  Google Scholar 

  19. Navarro, G., Reyes, N.: Dynamic spatial approximation trees for massive data. In: SISAP, pp. 81–88 (2009)

    Google Scholar 

  20. Vieira, M.R., Traina, C., Jr., Chino, F.J.T., Traina, A.J.M.: DBM-tree: a dynamic metric access method sensitive to local density data. J. Inf. Data Manage. 1(1), 111–128 (2010)

    Google Scholar 

  21. Aronovich, L., Spiegler, I.: CM-tree: a dynamic clustered index for similarity search in metric databases. Data Knowl. Eng. 63(3), 919–946 (2007)

    Article  Google Scholar 

  22. Almeida, J., Torres, R.D.S., Leite, N.J.: BP-tree: an efficient index for similarity search in high-dimensional metric spaces. In: CIKM, pp. 1365–1368 (2010)

    Google Scholar 

  23. Vidal, E.: An algorithm for finding nearest neighbors in (approximately) constant average time. Pattern Recogn. Lett. 4(3), 145–157 (1986)

    Article  MathSciNet  Google Scholar 

  24. Ruiz, G., Santoyo, F., Chávez, E., Figueroa, K., Tellez, E.S.: Extreme pivots for faster metric indexes. In: Brisaboa, N., Pedreira, O., Zezula, P. (eds.) SISAP 2013. LNCS, vol. 8199, pp. 115–126. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-41062-8_12

    Chapter  Google Scholar 

  25. Mosko, J., Lokoc, J., Skopal, T.: Clustered pivot tables for I/O optimized similarity search. In: SISAP, pp. 17–24 (2011)

    Google Scholar 

  26. Baeza-Yates, R., Cunto, W., Manber, U., Wu, S.: Proximity matching using fixed-queries trees. In: Crochemore, M., Gusfield, D. (eds.) CPM 1994. LNCS, vol. 807, pp. 198–212. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-58094-8_18

    Chapter  Google Scholar 

  27. Bozkaya, T., Ozsoyoglu, M.: Distance-based indexing for high dimensional metric spaces. In: SIGMOD, pp. 357–368 (1997)

    Google Scholar 

  28. Skopal, T., Pokorny, J., Snasel, V.: PM-tree: pivoting metric tree for similarity search in multimedia databases. In: ADBIS, pp. 803–815 (2004)

    Google Scholar 

  29. Novak, D., Batko, M., Zezula, P.: Metric Index: an efficient and scalable solution for precise and approximate similarity search. Inf. Syst. 36(4), 721–733 (2011)

    Article  Google Scholar 

  30. Rigaux, P., Scholl, M., Voisard, A.: 6 - Spatial Access Methods. In: Spatial Databases, pp 201–266. Morgan Kaufmann, San Francisco (2002)

    Google Scholar 

  31. Nievergelt, J., Hinterberger, H., Sevcik, K.C.: The grid file: an adaptable, symmetric multikey file structure. ACM Trans. Database Syst. 9(1), 38–71 (1984)

    Article  Google Scholar 

  32. Finkel, R.A., Bentley, J.L.: Quad trees a data structure for retrieval on composite keys. Acta Informatica 4, 1–9 (1974). https://doi.org/10.1007/BF00288933

    Article  MATH  Google Scholar 

  33. Zhang, J., You, S., Gruenwald, L.: Parallel quadtree coding of large-scale raster geospatial data on GPGPUs. In: Proceedings of the 19th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, pp. 457–460. ACM, New York (2011)

    Google Scholar 

  34. Bentley, J.L.: Multidimensional binary search trees used for associative searching. Commun. ACM 18(9), 509–517 (1975)

    Article  MathSciNet  Google Scholar 

  35. Castro, J., Burns, S.: Online data visualization of multidimensional databases using the Hilbert space–filling curve. In: Lévy, P.P., Le Grand, B., Poulet, F., Soto, M., Darago, L., Toubiana, L., Vibert, J.-F. (eds.) VIEW 2006. LNCS, vol. 4370, pp. 92–109. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-71027-1_9

    Chapter  Google Scholar 

  36. Guttman, A.: R-trees: a dynamic index structure for spatial searching. SIGMOD Rec. 14(2), 47–57 (1984)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrés Pascal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Planas, A., Pascal, A., Herrera, N. (2020). MeTree: A Metric Spatial Index. In: Pesado, P., Arroyo, M. (eds) Computer Science – CACIC 2019. CACIC 2019. Communications in Computer and Information Science, vol 1184. Springer, Cham. https://doi.org/10.1007/978-3-030-48325-8_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-48325-8_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-48324-1

  • Online ISBN: 978-3-030-48325-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics