Skip to main content

Exact Solutions for the Steiner Path Cover Problem on Special Graph Classes

  • Conference paper
  • First Online:
Operations Research Proceedings 2019

Abstract

The Steiner path problem is a restriction of the well known Steiner tree problem such that the required terminal vertices lie on a path of minimum cost. While a Steiner tree always exists within connected graphs, it is not always possible to find a Steiner path. Despite this, one can ask for the Steiner path cover, i.e. a set of vertex disjoint simple paths which contains all terminal vertices and possibly some of the non-terminal vertices. We show how a Steiner path cover of minimum cardinality for the disjoint union and join composition of two graphs can be computed in linear time from the corresponding values of the involved graphs. The cost of an optimal Steiner path cover is the minimum number of Steiner vertices in a Steiner path cover of minimum cardinality. We compute recursively in linear time the cost within a Steiner path cover for the disjoint union and join composition of two graphs by the costs of the involved graphs. This leads us to a linear time computation of an optimal Steiner path, if it exists, for special co-graphs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abu-Affash, A.K., Carmi, P., Katz, M.J., Segal, M.: The Euclidean bottleneck Steiner path problem and other applications of (α,β)-pair decomposition. Discrete Comput. Geom. 51(1), 1–23 (2014)

    Google Scholar 

  2. Bodlaender, H., Cygan, M., Kratsch, S., Nederlof, J.: Deterministic single exponential time algorithms for connectivity problems parameterized by treewidth. Inf. Comput. 243, 86–111 (2015)

    Google Scholar 

  3. Corneil, D., Lerchs, H., Stewart-Burlingham, L.: Complement reducible graphs. Discrete Appl. Math. 3, 163–174 (1981)

    Google Scholar 

  4. Corneil, D., Perl, Y., Stewart, L.: A linear recognition algorithm for cographs. SIAM J. Comput. 14(4), 926–934 (1985)

    Google Scholar 

  5. Crespelle, C., Paul, C.: Fully dynamic recognition algorithm and certificate for directed cographs. Discrete Appl. Math. 154(12), 1722–1741 (2006)

    Google Scholar 

  6. Custic, A., Lendl, S.: On streaming algorithms for the Steiner cycle and path cover problem on interval graphs and falling platforms in video games. ACM Comput. Res. Repository abs/1802.08577, 9 pp. (2018)

    Google Scholar 

  7. Moharana, S.S., Joshi, A., Vijay, S.: Steiner path for trees. Int. J. Comput. Appl. 76(5), 11–14 (2013)

    Google Scholar 

  8. Reich, G., Widmayer, P.: Beyond Steiner’s problem: a VLSI oriented generalization. In: Proceedings of Graph-Theoretical Concepts in Computer Science (WG). Lecture Notes in Computer Science, vol. 411, pp. 196–210. Springer, Berlin (1990)

    Google Scholar 

  9. Wald, J., Colbourn, C.: Steiner trees in outerplanar graphs. In: Thirteenth Southeastern Conference on Combinatorics, Graph Theory, and Computing, pp. 15–22 (1982)

    Google Scholar 

  10. Wald, J., Colbourn, C.: Steiner trees, partial 2-trees, and minimum IFI networks. Networks 13, 159–167 (1983)

    Google Scholar 

  11. Westbrook, J., Yan, D.: Approximation algorithms for the class Steiner tree problem (1995). Research Report

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jochen Rethmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gurski, F., Hoffmann, S., Komander, D., Rehs, C., Rethmann, J., Wanke, E. (2020). Exact Solutions for the Steiner Path Cover Problem on Special Graph Classes. In: Neufeld, J.S., Buscher, U., Lasch, R., Möst, D., Schönberger, J. (eds) Operations Research Proceedings 2019. Operations Research Proceedings. Springer, Cham. https://doi.org/10.1007/978-3-030-48439-2_40

Download citation

Publish with us

Policies and ethics