Skip to main content

A Two-Phase Approach for Model-Based Design of Experiments Applied in Chemical Engineering

  • Conference paper
  • First Online:
Operations Research Proceedings 2019

Abstract

Optimal (model-based) experimental design (OED) aims to determine the interactions between input and output quantities connected by an, often complicated, mathematical model as precisely as possible from a minimum number of experiments. While statistical design techniques can often be proven to be optimal for linear models, this is no longer the case for nonlinear models. In process engineering applications, where the models are characterized by physico-chemical laws, nonlinear models often lead to nonconvex experimental design problems, thus making the computation of optimal experimental designs arduous. On the other hand, the optimal selection of experiments from a finite set of experiments can be formulated as a convex optimization problem for the most important design criteria and, thus, solved to global optimality. Since the latter represents an approximation of common experimental design problems, we propose a two-phase strategy that first solves the convex selection problem, and then uses this optimal selection to initialize the original problem. Finally, we illustrate and evaluate this generic approach and compare it with two statistical approaches on an OED problem from chemical process engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fedorov, V.V., Leonov, S.L.: Optimal Design for Nonlinear Response Models. CRC Press, Boca Raton (2014)

    Google Scholar 

  2. Montgomery, D.C.: Design and Analysis of Experiments, 8th edn. Wiley, Hoboken, NJ (2013)

    Google Scholar 

  3. Asprion, N., Boettcher, R., Mairhofer, J., Yliruka, M., Hoeller, J., Schwientek, J., Vanaret, Ch., Bortz, M.: Implementation and application of model-based design of experiments in a flowsheet simulator. J. Chem. Eng. Data 65, 1135–1145 (2020). DOI:10.1021/acs.jced.9b00494

    Google Scholar 

  4. Sobol, I.M.: On the distribution of points in a cube and the approximate evaluation of integrals. Zh. Vych. Mat. Mat. Fiz. 7(4), 784–802 (1967)

    Google Scholar 

  5. Boyd, S., Vandenberghe, L.: Convex Optimization, 7th edn. Cambridge University Press, Cambridge (2009)

    Google Scholar 

  6. Vanaret, Ch., Seufert, Ph., Schwientek, J., Karpov, G., Ryzhakov, G., Oseledets, I., Asprion, N., Bortz, M.: Two-phase approaches to optimal model-based design of experiments: how many experiments and which ones? Chem. Eng. Sci. (2019) (Submitted)

    Google Scholar 

  7. Andersen, M.S., Dahl, J., Vandenberghe, L.: CVXOPT – Python Software for Convex Optimization. http://cvxopt.org (2019)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Schwientek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Schwientek, J. et al. (2020). A Two-Phase Approach for Model-Based Design of Experiments Applied in Chemical Engineering. In: Neufeld, J.S., Buscher, U., Lasch, R., Möst, D., Schönberger, J. (eds) Operations Research Proceedings 2019. Operations Research Proceedings. Springer, Cham. https://doi.org/10.1007/978-3-030-48439-2_62

Download citation

Publish with us

Policies and ethics