Abstract
Optimal (model-based) experimental design (OED) aims to determine the interactions between input and output quantities connected by an, often complicated, mathematical model as precisely as possible from a minimum number of experiments. While statistical design techniques can often be proven to be optimal for linear models, this is no longer the case for nonlinear models. In process engineering applications, where the models are characterized by physico-chemical laws, nonlinear models often lead to nonconvex experimental design problems, thus making the computation of optimal experimental designs arduous. On the other hand, the optimal selection of experiments from a finite set of experiments can be formulated as a convex optimization problem for the most important design criteria and, thus, solved to global optimality. Since the latter represents an approximation of common experimental design problems, we propose a two-phase strategy that first solves the convex selection problem, and then uses this optimal selection to initialize the original problem. Finally, we illustrate and evaluate this generic approach and compare it with two statistical approaches on an OED problem from chemical process engineering.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Fedorov, V.V., Leonov, S.L.: Optimal Design for Nonlinear Response Models. CRC Press, Boca Raton (2014)
Montgomery, D.C.: Design and Analysis of Experiments, 8th edn. Wiley, Hoboken, NJ (2013)
Asprion, N., Boettcher, R., Mairhofer, J., Yliruka, M., Hoeller, J., Schwientek, J., Vanaret, Ch., Bortz, M.: Implementation and application of model-based design of experiments in a flowsheet simulator. J. Chem. Eng. Data 65, 1135–1145 (2020). DOI:10.1021/acs.jced.9b00494
Sobol, I.M.: On the distribution of points in a cube and the approximate evaluation of integrals. Zh. Vych. Mat. Mat. Fiz. 7(4), 784–802 (1967)
Boyd, S., Vandenberghe, L.: Convex Optimization, 7th edn. Cambridge University Press, Cambridge (2009)
Vanaret, Ch., Seufert, Ph., Schwientek, J., Karpov, G., Ryzhakov, G., Oseledets, I., Asprion, N., Bortz, M.: Two-phase approaches to optimal model-based design of experiments: how many experiments and which ones? Chem. Eng. Sci. (2019) (Submitted)
Andersen, M.S., Dahl, J., Vandenberghe, L.: CVXOPT – Python Software for Convex Optimization. http://cvxopt.org (2019)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Schwientek, J. et al. (2020). A Two-Phase Approach for Model-Based Design of Experiments Applied in Chemical Engineering. In: Neufeld, J.S., Buscher, U., Lasch, R., Möst, D., Schönberger, J. (eds) Operations Research Proceedings 2019. Operations Research Proceedings. Springer, Cham. https://doi.org/10.1007/978-3-030-48439-2_62
Download citation
DOI: https://doi.org/10.1007/978-3-030-48439-2_62
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-48438-5
Online ISBN: 978-3-030-48439-2
eBook Packages: Business and ManagementBusiness and Management (R0)