Skip to main content

Deadlock-Free and Collision-Free Liver Surgical Navigation by Switching Potential-Based and Sensor-Based Functions

  • Conference paper
  • First Online:
Human-Computer Interaction. Human Values and Quality of Life (HCII 2020)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 12183))

Included in the following conference series:

Abstract

In this study, we developed a deadlock-free and collision-free liver surgical navigation method by switching potential-based and sensor-based approaches. The potential-based approach selects a near-optimal route from a scalpel tip to an arbitrary neighbor position around a tumor in a 3D organ map converted from digital imaging and communications in medicine (DICOM) data captured by magnetic resonance imaging or computed tomography. However, among complex-shaped blood vessels, the approach sometimes loses the route. To overcome this drawback, we switch to the sensor-based approach. This approach always finds a route near a tumor. However, the path becomes longer. Therefore, when the potential-based approach recovers to find another path, we switch the sensor-based approach back to the potential-based approach. The usefulness of this switching method was carefully ascertained in several kinds of allocations of tumor and blood vessels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. World Forum for Medicine. https://www.medica-tradefair.com/

  2. Peterhans, M., et al.: A navigation system for open liver surgery: design, workflow and first clinical applications. Int. J. Med. Robot. 7(1), 7–16 (2011)

    Article  Google Scholar 

  3. Nicolas, C.B., et al.: Augmented environments for the targeting of hepatic lesions during image-guided robotic liver surgery. J. Surg. Res. 184(2), 825–831 (2013)

    Article  Google Scholar 

  4. Satou, S., et al.: Initial experience of intraoperative three-dimensional navigation for liver resection using real-time virtual sonography. J. Surg. 155(2), 255–262 (2014)

    Google Scholar 

  5. Pessaux, P., Diana, M., Soler, L., Piardi, T., Mutter, D., Marescaux, J.: Towards cybernetic surgery: robotic and augmented reality-assisted liver segmentectomy. Langenbecks Arch. Surg. 400(3), 381–385 (2015)

    Article  Google Scholar 

  6. Morita, Y., Takanishi, K., Matsumoto, J.: A new simple navigation for anatomic liver resection under intraoperative real-time ultrasound guidance. Hepatogastroenterology 61(34), 1734–1738 (2014)

    Google Scholar 

  7. Mahmud, N., Cohen, J., Tsourides, K., Berzin, T.M.: Computer vision and augmented reality in gastrointestinal endoscopy. Gastroenterol. Rep. (Oxf.) 3(3), 179–184 (2015)

    Article  Google Scholar 

  8. Smith, R., Cheeseman, P.: On the representation and estimation of spatial uncertainty. Int. J. Robot. Res. 5(4), 56–68 (1986)

    Article  Google Scholar 

  9. Brooks, R.A.: Visual map making for a mobile robot. In: Proceedings of the IEEE International Conference Robotics and Automation, pp. 824–829. IEEE, St. Louis (1985)

    Google Scholar 

  10. Chatila, R., Laumond, J-P.: Position referencing and consistent world modeling for mobile robots. In: Proceedings of the IEEE International Conference on Robotics and Automation, pp. 138–145. IEEE, St. Louis (1985)

    Google Scholar 

  11. Mur-Artal, R., Tardós, J.D.: ORB-SLAM2: an open-source SLAM system for monocular, stereo and RGB-D cameras. IEEE Trans. Robot. 33(5), 1255–1262 (2017)

    Article  Google Scholar 

  12. Konolige K., Bradski, G.R.: ORB: an efficient alternative to SIFT or SURF. In: Proceedings of the 2011 International Conference on Computer Vision, pp. 2564–2571 (2011)

    Google Scholar 

  13. Koeda, M., Nishimoto, S., Noborio, H., Watanabe, K.: Proposal and evaluation of AR-based microscopic brain surgery support system. In: Kurosu, M. (ed.) HCII 2019. LNCS, vol. 11567, pp. 458–468. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-22643-5_36

    Chapter  Google Scholar 

  14. Pieper, S., Halle, M., Kikinis, R.: 3D slicer. In: Proceedings of the 1st IEEE International Symposium on Biomedical Imaging: From Nano to Macro, pp. 632–635 (2004)

    Google Scholar 

  15. Noborio, H., et al.: Motion transcription algorithm by matching corresponding depth image and Z-buffer. In: Proceedings of the 10th Anniversary Asian Conference on Computer Aided Surgery, pp. 60–61, Kyusyu University, Fukuoka (2014)

    Google Scholar 

  16. Noborio, H., et al.: Experimental results of 2D depth-depth matching algorithm based on depth camera Kinect v1. J. Bioinf. Neurosci. 1(1), 38–44 (2015). ISSN: 2188-8116

    Google Scholar 

  17. Watanabe, K., et al.: Parameter identification of depth-depth-matching algorithm for liver following. J. Teknologi Med. Eng. 77(6), 35–39 (2015). https://doi.org/10.11113/jt.v77.6224. Penerbit UTM Press, E-ISSN 2180-3722

    Article  Google Scholar 

  18. Besl, P.J., McKay, N.D.: A method for registration of 3-D shapes. IEEE Trans. Pattern Anal. Mach. Intell. 14(2), 239–256 (1992)

    Article  Google Scholar 

  19. Zhang, Z.: Iterative point matching for registration of free-form surfaces. Int. J. Comput. Vis. 13(2), 119–152 (1994)

    Article  Google Scholar 

  20. Granger, S., Pennec, X.: Multi-scale EM-ICP: a fast and robust approach for surface registration. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2353, pp. 418–432. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-47979-1_28

    Chapter  Google Scholar 

  21. Liu, Y.: Automatic registration of overlapping 3D point clouds using closest points. J. Image Vis. Comput. 24(7), 762–778 (2006)

    Article  MathSciNet  Google Scholar 

  22. Salvi, J., Matabosch, C., Fofi, D., Forest, J.: A review of recent range image registration methods with accuracy evaluation. J. Image Vis.-Comput. 25, 578–596 (2007)

    Article  Google Scholar 

  23. Rusu, R.B., Cousins, S.: 3D is here: point cloud library (PCL). In: Proceedings of IEEE International Conference Robotics and Automation, pp. 1 − 4 (2011)

    Google Scholar 

  24. Wu, Y.F., Wang, W., Lu, K.Q., Wei, Y.D., Chen, Z.C.: A new method for registration of 3D point sets with low overlapping ratios. In: Proceedings of 13th CIRP Conference on Computer Aided Tolerancing, pp. 202 − 206 (2015)

    Google Scholar 

  25. Noborio, H., Kunii, T., Mizushino, K.: Omni-directional shortest distance algorithm by complete parallel-processing based on GPU cores. Int. J. Biosci. Biochem. Bioinf. 8(2), 79–88 (2018). https://doi.org/10.17706/ijbbb.2018.8.2.79-88. ISSN: 2010-3638

    Article  Google Scholar 

  26. Noborio, H., Kunii, T., Mizushino, K.: GPU-based shortest distance algorithm for liver surgery navigation. In: Proceedings of 10th Anniversary Asian Conference Computer Aided Surgery, pp. 42–43 (2014)

    Google Scholar 

  27. Khatib, O.: Real-time obstacle avoidance for manipulators and mobile robots. Int. J. Robot. Res. 5(1), 90–98 (1986). https://doi.org/10.1177/027836498600500106

    Article  Google Scholar 

  28. Schulman, J., et al.: Motion planning with sequential convex optimization and convex collision checking. Int. J. Robot. Res. 33(9), 1251–1270 (2014)

    Article  Google Scholar 

  29. Noborio, H., Aoki, K., Kunii, T., Mizushino, K.: A potential function-based scalpel navigation method that avoids blood vessel groups during excision of cancerous tissue. In: Proceedings of the 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC 2016), pp. 6106–6112 (2016)

    Google Scholar 

  30. Noborio, H.: A sufficient condition for designing a family of sensor-based deadlock-free path-planning algorithms. J. Adv. Robot. 7(5), 413–433 (1993)

    Article  Google Scholar 

  31. Noborio, H.: On a sensor-based navigation for a mobile robot. J. Robot. Mechatron. 8(1), 2–14 (1996)

    Article  Google Scholar 

  32. McGuire, K., Croon, G., Tuyls, K.: A comparative study of bug algorithms for robot navigation. J. Robot. Auton. Syst. 121 (2019). https://doi.org/10.1016/j.robot.2019.103261

Download references

Acknowledgment

This study was supported partly by 2014 Grants-in-Aid for Scientific Research (B) (No. 26289069) and 2017 Grants-in-Aid for Scientific Research (C) (No. 17K00420) from the Ministry of Education, Culture, Sports, Science, and Technology, Japan. Further support was provided by the 2014 Cooperation Research Fund from the Graduate School at Osaka Electro-Communication University. We would like to thank Editage (www.editage.com) for English language editing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroshi Noborio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Noborio, H., Kawai, K., Watanabe, K., Tachibana, K., Kunii, T., Mizushino, K. (2020). Deadlock-Free and Collision-Free Liver Surgical Navigation by Switching Potential-Based and Sensor-Based Functions. In: Kurosu, M. (eds) Human-Computer Interaction. Human Values and Quality of Life. HCII 2020. Lecture Notes in Computer Science(), vol 12183. Springer, Cham. https://doi.org/10.1007/978-3-030-49065-2_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-49065-2_42

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-49064-5

  • Online ISBN: 978-3-030-49065-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics