Skip to main content

Unsupervised Learning Method for Mineral Identification from Hyperspectral Data

  • Conference paper
  • First Online:
Innovations in Bio-Inspired Computing and Applications (IBICA 2019)

Abstract

Hyperspectral imagery is one of the research area in the field of Remote sensing. Hyperspectral sensors record reflectance (also called spectra signature) of object or material or region across the electromagnetic spectrum. Mineral identification is an urban application in the field of Remote sensing of Hyperspectral data. EO-1 hyperion dataset is unlabeled data. Various types of clustering algorithms are proposed to identify minerals. In this work principal component analysis is used to reduced it’s dimension by reducing bands. Hard-clustering and soft-clustering algorithms are applied on given data to classify the minerals into classes. K-means is hard type of clustering which classify only non-overlapping cluster however, PFCM is soft type of clustering which allow a data points to belongs more than one cluster. Further, results are compared using cluster validity index using DBI value. Both clustering algorithms are experiments on original HSI image and reduced bands. Result shows that PFCM is perform better than K-means for the both type of images.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Sawant, S.S., Prabukumar, M.: Semi-supervised techniques based hyper-spectral image classification: a survey. In: 2017 Innovations in Power and Advanced Computing Technologies (i-PACT), pp. 1–8, April 2017

    Google Scholar 

  2. Mou, L., Ghamisi, P., Zhu, X.X.: Unsupervised spectral-spatial feature learning via deep residual Conv-Deconv network for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 56(1), 391–406 (2018)

    Article  Google Scholar 

  3. Zhao, Y., Yuan, Y., Wang, Q.: Fast spectral clustering for unsupervised hyperspectral image classification. Remote Sens. 11(4) (2019). http://www.mdpi.com/ 2072-4292/11/4/399

  4. Zhu, X.X., Tuia, D., Mou, L., Xia, G., Zhang, L., Xu, F., Fraundorfer, F.: Deep learning in remote sensing: a comprehensive review and list of resources. IEEE Geosci. Remote Sens. Mag. 5(4), 8–36 (2017)

    Article  Google Scholar 

  5. Cao, L., Wang, C., Li, J.: Vehicle detection from highway satellite images via transfer learning. Inf. Sci. 366, 177–187 (2016). http://www.sciencedirect.com/science/article/pii/S0020025516000062

  6. Janaki Rama Suresh, G., Kandrika, S., Sivasamy, R.: Hyperspectral analysis of clay minerals. ISPRS – Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. XL-8, 443–446 (2014)

    Google Scholar 

  7. Satpathy, R.: Spectral analysis of hyperion data for mapping the spatial variation of in a part of Latehar Gumla district, Jharkhand. J. Geograph. Inf. Syst. 2, 210–214 (2010)

    Google Scholar 

  8. Carrino, T.A., Crsta, A.P., Toledo, C.L.B., Silva, A.M.: Hyperspectral remote sensing applied to mineral exploration in southern Peru: a multiple data integration approach in the Chapi Chiara gold prospect. Int. J. Appl. Earth Obs. Geoinf. 64, 287–300 (2018). http://www.sciencedirect.com/science/article/pii/S0303243417301071

  9. Villa, A., Chanussot, J., Benediktsson, J., Jutten, C., Dambreville, R.: Unsupervised methods for the classification of hyperspectral images with low spatial resolution. Pattern Recogn. 46(6), 1556–1568 (2013). http://www.sciencedirect.com/ science/article/pii/S0031320312004967

  10. Ishidoshiro, N., Yamaguchi, Y., Noda, S., Asano, Y., Kondo, T., Kawakami, Y., Mitsuishi, M., Nakamura, H.: Geological mapping by combining spectral unmixing and cluster analysis for hyperspectral data. ISPRS - Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. XLI-B8, 431–435 (2016)

    Google Scholar 

  11. Clark, R., Boardman, J., Mustard, J., Kruse, F., Ong, C., Pieters, C., Swayze, G.: Mineral mapping and applications of imaging spectroscopy. In: 2006 IEEE International Symposium on Geoscience and Remote Sensing, pp. 1986–1989, July 2006

    Google Scholar 

  12. Tangestani, M.: Spectral angle mapping and linear spectral unmixing of the ASTER data for alteration mapping at Sarduiyeh area, SE Kerman, Iran, May 2019

    Google Scholar 

  13. Huo, H., Guo, J., Li, Z.-L.: Hyperspectral image classification for land cover based on an improved interval type-II fuzzy C-means approach. Sensors 18(2) (2018). http://www.mdpi.com/1424-8220/18/2/363

  14. Li, N., Huang, X., Zhao, H., Qiu, X., Geng, R., Jia, X., Wang, D.: Multiparameter optimization for mineral mapping using hyperspectral imagery. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 11(4), 1348–1357 (2018)

    Article  Google Scholar 

  15. https://earthexplorer.usgs.gov/

  16. Vigneshkumar, M., Yarakkula, K.: Nontronite mineral identification in Nilgiri Hills of Tamil Nadu using hyperspectral remote sensing. IOP Conf. Ser.: Mater. Sci. Eng. 263, 032001 (2017). https://doi.org/10.1088/1757-899X/263/3/032001

  17. Rani, N., Mandla, V.R., Singh, T.: Evaluation of atmospheric corrections on hyperspectral data with special reference to mineral mapping. Geosci. Front. 8(4), 797 – 808 (2017). Special Issue: Deep Seated Magmas and Their Mantle Roots. http://www.sciencedirect.com/science/article/pii/S1674987116300603

  18. Simhachalam, B., Ganesan, G.: Possibilistic fuzzy c-means clustering on medical diagnostic systems. In: 2014 International Conference on Contemporary Computing and Informatics (IC3I), pp. 1125–1129, November 2014

    Google Scholar 

  19. Pal, N.R., Pal, K., Keller, J.M., Bezdek, J.C.: A possibilistic fuzzy c-means clustering algorithm. IEEE Trans. Fuzzy Syst. 13(4), 517–530 (2005)

    Article  Google Scholar 

  20. Siddique, M.A., Bente Arif, R., Mahmudur Rahman Khan, M., Ashrafi, Z.: Implementation of fuzzy c-means and possibilistic c-means clustering algorithms, cluster tendency analysis and cluster validation, September 2018

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Prabhavathy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Prabhavathy, P., Tripathy, B.K., Venkatesan, M. (2021). Unsupervised Learning Method for Mineral Identification from Hyperspectral Data. In: Abraham, A., Panda, M., Pradhan, S., Garcia-Hernandez, L., Ma, K. (eds) Innovations in Bio-Inspired Computing and Applications. IBICA 2019. Advances in Intelligent Systems and Computing, vol 1180. Springer, Cham. https://doi.org/10.1007/978-3-030-49339-4_16

Download citation

Publish with us

Policies and ethics