Skip to main content

Hardware Accelerator for Real-Time Holographic Projector

  • Conference paper
  • First Online:
Intelligent Systems Design and Applications (ISDA 2019)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1181))

Abstract

With increasing popularity holographic method, 3D scene and augmented reality, needless to say, that 3D holography would be playing the most important role of real-time recording display. This paper demonstrates a setup that shows and records the scene in a real-time 3D appearance. We speed up the holographic processing by using a hardware accelerator to take advantage of its parallel specificities (architecture). The results clarify the system’s ability for viewing the holographic objects by applying four cameras running at the same time with a difference in partial of millisecond attributed to reason the clock of cameras and the VGA update.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Li, X., Chen, C.P., Li, Y., Zhou, P., Jiang, X., Rong, N., Liu, S., He, G., Lu, J., Su, Y.: High-efficiency video-rate holographic display using quantum dot doped liquid crystal. J. Disp. Technol. 12(4), 362–367 (2016)

    Article  Google Scholar 

  2. Zhang, Z., Chen, C.P., Li, Y., Yu, B., Zhou, L., Wu, Y.: Angular multiplexing of holographic display using tunable multi-stage gratings. Mol. Cryst. Liq. Cryst. (Phila. Pa.) 657(1), 102–106 (2017)

    Article  Google Scholar 

  3. Lippmann, G.: Epreuves reversibles photographies integrals. C. R. Acad. Sci. 146, 446–451 (1908)

    Google Scholar 

  4. Yang, R., Huang, X., Li, S., Jaynes, C.: Toward the light field display: autostereoscopic rendering via a cluster of projectors. IEEE Trans. Vis. Comput. Graph. 14(1), 84–96 (2008)

    Article  Google Scholar 

  5. Johnson, P.V., Parnell, J.A., Kim, J., Saunter, C.D., Love, G.D., Banks, M.S.: Dynamic lens and monovision 3D displays to improve viewer comfort. Opt. Express 24(11), 11808–11827 (2016)

    Article  Google Scholar 

  6. Lee, S., Park, J., Heo, J., Kang, B., Kang, D., Hwang, H., Lee, J., Choi, Y., Choi, K., Nam, D.: Autostereoscopic 3D display using directional subpixel rendering. Opt. Express 26(16), 20233 (2018)

    Article  Google Scholar 

  7. Hilaire, P.S., Benton, S.A., Lucente, M., Jepsen, M.L., Kollin, J., Yoshikawa, H., Underkoffler, J.: Electronic display system for computational holography. Proc. SPIE 1212, 174–182 (1990)

    Article  Google Scholar 

  8. Masuda, N., Ito, T., Tanaka, T., Shiraki, A., Sugie, T.: Computer generated holography using a graphics processing unit. Opt. Express 14(2), 603–608 (2006)

    Article  Google Scholar 

  9. Hahn, J., Kim, H., Lim, Y., Park, G., Lee, B.: Wide viewing angle dynamic holographic stereogram with a curved array of spatial light modulators. Opt. Express 16(16), 12372–12386 (2008)

    Article  Google Scholar 

  10. Xue, G., Liu, J., Li, X., Jia, J., Zhang, Z., Hu, B., Wang, Y.: Multiplexing encoding method for full-color dynamic 3D holographic display. Opt. Express 22(15), 18473–18482 (2014)

    Article  Google Scholar 

  11. Kang, H., Ahn, C., Lee, S., Lee, S.: Computer-generated 3D holograms of depth-annotated images. Proc. SPIE 5742, 234–241 (2005)

    Article  Google Scholar 

  12. Kakue, T., Wagatsuma, Y., Yamada, S., Nishitsuji, T., Endo, Y., Nagahama, Y., Hirayama, R., Shimobaba, T., Ito, T.: Review of real-time reconstruction techniques for aerial-projection holographic displays. Opt. Eng. 57(06), 1 (2018)

    Article  Google Scholar 

  13. Mishina, T., Okui, M., Okano, F.: Calculation of holograms from elemental images captured by integral photography. Appl. Opt. 45(17), 4026–4036 (2006)

    Article  Google Scholar 

  14. Chang, E.Y., Choi, J., Lee, S., Kwon, S., Yoo, J., Park, M., Kim, J.: 360-degree color hologram generation for real 3D objects. Appl. Opt. 57(1), A91–A100 (2018)

    Article  Google Scholar 

  15. Zhao, Y., Kwon, K.C., Erdenebat, M.U., Islam, M.S., Jeon, S.H., Kim, N.: Quality enhancement and GPU acceleration for a full-color holographic system using a relocated point cloud gridding method. Appl. Opt. 57(15), 4253–4262 (2018)

    Article  Google Scholar 

  16. Zhao, Y., Piao, Y., Park, S., Lee, K., Kim, N.: Fast calculation method for full-color computer-generated hologram of real objects captured by depth camera. Electron. Imaging 2018(4), 250–251 (2018)

    Article  Google Scholar 

  17. Zhao, Y., Shi, C., Kwon, K., Piao, Y., Piao, M., Kim, N.: Fast calculation method of computer-generated hologram using a depth camera with point cloud gridding. Opt. Commun. 411, 166–169 (2018)

    Article  Google Scholar 

  18. Ichihashi, Y., Oi, R., Senoh, T., Yamamoto, K., Kurita, T.: Real-time capture and reconstruction system. Opt. Express 20(19), 21645–21655 (2012)

    Article  Google Scholar 

  19. Yamaguchi, M.: Light-field and holographic three-dimensional displays [Invited]. J. Opt. Soc. Am. A 33(12), 2348–2364 (2016)

    Article  Google Scholar 

  20. Wakunami, K., Yamashita, H., Yamaguchi, M.: Occlusion culling for computer generated hologram based on ray-wavefront conversion. Opt. Express 21(19), 21811–21822 (2013)

    Article  Google Scholar 

  21. Wakunami, K., Yamaguchi, M.: Calculation for computer generated hologram using ray-sampling plane. Opt. Express 19(10), 9086–9101 (2011)

    Article  Google Scholar 

  22. Igarashi, S., Nakamura, T., Matsushima, K., Yamaguchi, M.: Efficient tiled calculation of over-10-gigapixel holograms using ray-wavefront conversion. Opt. Express 26(8), 10773–10786 (2018)

    Article  Google Scholar 

  23. Heikklä, M., Pietikäinen, M.: A texture-based method for modeling the background and detecting moving objects. IEEE Trans. Pattern Anal. Mach. Intell. 28(4), 657–662 (2006)

    Article  Google Scholar 

  24. Al-Shamma, O., Fadhel, M., Hameed, R., Alzubaidi, L., Zhang, J.: Boosting convolutional neural networks performance based on FPGA accelerator. In: International Conference on Intelligent Systems Design and Applications, pp. 509–517. Springer, Cham (2018)

    Google Scholar 

  25. Fadhel, M., Al-Shamma, O., Oleiwi, S., Taher, B., Alzubaidi, L.: Real-time PCG diagnosis using FPGA. In: International Conference on Intelligent Systems Design and Applications, pp. 518–529. Springer, Cham (2018)

    Google Scholar 

  26. Al-Shamma, O., Fadhel, M.A., Hasan, H.S.: Employing FPGA accelerator in real-time speaker identification systems. In: Recent Trends in Signal and Image Processing, pp. 125–134. Springer, Singapore (2019)

    Google Scholar 

  27. OV7670, CMOS VGA. CAMERACHIPTM Sensor Datasheet, OmniVision. http://www.cutedigi.com/pub/sensor/Imaging.OV7670-Datasheet.pdf

  28. Board, DE1-SoC. Terasic (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laith Alzubaidi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fadhel, M.A., Al-Shamma, O., Alzubaidi, L. (2021). Hardware Accelerator for Real-Time Holographic Projector. In: Abraham, A., Siarry, P., Ma, K., Kaklauskas, A. (eds) Intelligent Systems Design and Applications. ISDA 2019. Advances in Intelligent Systems and Computing, vol 1181. Springer, Cham. https://doi.org/10.1007/978-3-030-49342-4_13

Download citation

Publish with us

Policies and ethics