Abstract
Fruits classification is a challenging task due to the several types of fruits. To classify fruits more effectively, we propose a new deep convolutional neural network model to classify 118 fruits classes. The proposed model combines two aspects of convolutional neural networks, which are traditional and parallel convolutional layers. The parallel convolutional layers have been employed with different filter sizes to have better feature extraction. It also helps with backpropagation since the error can backpropagate from multiple paths. To avoid gradient vanishing problem and to have better feature representation, we have used residual connections. We have trained and tested our model on Fruits-360 dataset. Our model achieved an accuracy of 100% on a divided image set from the training set and achieved 99.6% on the test set, which outperformed previous methods.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Zhang, B.H., Huang, W., Li, J., Zhao, C., Fan, S., Wu, J., Liu, C.: Principles, developments and applications of computer vision for external quality inspection of fruits and vegetables: a review. Food Res. 62, 326–343 (2014)
Zhang, Y.D., Wu, L., Wang, S., Ji, G.: Comment on: principles, developments and applications of computer vision for external quality inspection of fruits and vegetables: a review (Food Research International; 2014, 62: 326–343). Food Res. 70, 142 (2015)
Pennington, J.A.T., Fisher, R.A.: Classification of fruits and vegetables. J. Food Compos. Anal. 22(Suppl. 1), S23–S31 (2009)
Pholpho, T., Pathaveerat, S., Sirisomboon, P.: Classification of longan fruit bruising using visible spectroscopy. J. Food Eng. 104, 169–172 (2011)
Yang, C., Lee, W.S., Williamson, J.G.: Classification of blueberry fruit and leaves based on spectral signatures. Biosyst. Eng. 113, 351–362 (2012)
Wu, L., Zhang, Y.: Classification of fruits using computer vision and a multiclass support vector machine. Sensors 12, 12489–12505 (2012)
Feng, X.W., Zhang, Q.H., Zhu, Z.L.: Rapid classification of citrus fruits based on raman spectroscopy and pattern recognition techniques. Food Sci. Technol. Res. 19, 1077–1084 (2013)
Cano Marchal, P., Gila, D.M., GarcÃa, J.G., Ortega, J.G.: Expert system based on computer vision to estimate the content of impurities in olive oil samples. J. Food Eng. 119, 220–228 (2013)
Breijo, E.G., Guarrasi, V., Peris, R.M., Fillol, M.A., Pinatti, C.O.: Odour sampling system with modifiable parameters applied to fruit classification. J. Food Eng. 116, 277–285 (2013)
Fan, F.H., Ma, Q., Ge, J., Peng, Q.Y., Riley, W.W., Tang, S.Z.: Prediction of texture characteristics from extrusion food surface images using a computer vision system and artificial neural networks. J. Food Eng. 118, 426–433 (2013)
Omid, M., Soltani, M., Dehrouyeh, M.H., Mohtasebi, S.S., Ahmadi, H.: An expert egg grading system based on machine vision and artificial intelligence techniques. J. Food Eng. 118, 70–77 (2013)
Zhang, Y., Wang, S., Ji, G., Phillips, P.: Fruit classification using computer vision and feedforward neural network. J. Food Eng. 143, 167–177 (2014)
Khanmohammadi, M., Karami, F., Mir-Marqués, A., Garmarudi, A.B., Garigues, S., de la Guardia, M.: Classification of persimmon fruit origin by near infrared spectrometry and least squares-support vector machines. J. Food Eng. 17–22 (2014)
Chaivivatrakul, S., Dailey, M.N.: Texture-based fruit detection. Precis. Agric. 15(6), 662–683 (2014). https://doi.org/10.1007/s11119-014-9361-x
Muhammad, G.: Date fruits classification using texture descriptors and shape size features. Eng. Appl. Artif. Intell. 37, 361–367 (2015)
Mureşan, H., Mihai, O.: Fruit recognition from images using deep learning. Acta Universitatis Sapientiae, Informatica 10(1), 26–42 (2018)
Siddiqi, R.: Effectiveness of transfer learning and fine tuning in automated fruit image classification. In: Proceedings of the 2019 3rd International Conference on Deep Learning Technologies. ACM (2019)
Alzubaidi, L., et al.: Deep learning models for classification of red blood cells in microscopy images to aid in sickle cell anemia diagnosis. Electronics 9(3), 427 (2020)
Alzubaidi, L., Fadhel, M.A., Oleiwi, S.R., et al.: DFU_QUTNet: diabetic foot ulcer classification using novel deep convolutional neural network. Multimed. Tools Appl. 79, 15655–15677 (2020). https://doi.org/10.1007/s11042-019-07820-w
Schmidhuber, J.: Deep learning in neural networks: an overview. Neural Netw. 61, 85–117 (2015)
Fadhel, M., et al.: Recognition of the unripe strawberry by using color segmentation techniques. Int. J. Eng. Technol. 7(4), 3383–3387 (2018)
Al-Shamma, O., et al.: Boosting convolutional neural networks performance based on FPGA accelerator. In: International Conference on Intelligent Systems Design and Applications. Springer, Cham (2018)
Alzubaidi, L., et al.: Optimizing the performance of breast cancer classification by employing the same domain transfer learning from hybrid deep convolutional neural network model. Electronics 9(3), 445 (2020)
Alzubaidi, L., et al.: Towards a better understanding of transfer learning for medical imaging: a case study. Appl. Sci. 10(13), 4523 (2020)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Alzubaidi, L., Al-Shamma, O., Fadhel, M.A., Arkah, Z.M., Awad, F.H. (2021). A Deep Convolutional Neural Network Model for Multi-class Fruits Classification. In: Abraham, A., Siarry, P., Ma, K., Kaklauskas, A. (eds) Intelligent Systems Design and Applications. ISDA 2019. Advances in Intelligent Systems and Computing, vol 1181. Springer, Cham. https://doi.org/10.1007/978-3-030-49342-4_9
Download citation
DOI: https://doi.org/10.1007/978-3-030-49342-4_9
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-49341-7
Online ISBN: 978-3-030-49342-4
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)