Skip to main content

Deep Quantile Regression Based Wind Generation and Demand Forecasts

  • Conference paper
  • First Online:
Proceedings of the 11th International Conference on Soft Computing and Pattern Recognition (SoCPaR 2019) (SoCPaR 2019)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1182))

Included in the following conference series:

Abstract

The widespread attention in the growth of clean energy for electricity production necessitates an accurate and reliable generation and demand forecasts. However, the decision-making process in electric power industry involves more uncertainty due to the transition towards distributed energy systems, which are not addressed in the conventional point forecasts. This paper proposes a probabilistic method termed as Deep Quantile Regression (DQR) for the construction of prediction intervals (PIs) that can potentially quantify uncertainty in the point forecasts of wind power generation and demand. The effectiveness of DQR is examined using the low and high seasonal wind and demand datasets. PIs with various confidence levels of 99%, 95% and 90% are estimated by constructing the appropriate quantiles using the proposed DQR method. The quantitative comparison of the quality in all the estimated PIs using the proposed method proves to outperform the other state-of-the-art methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hong, T., Fan, S.: Probabilistic electric load forecasting: a tutorial review. Int. J. Forecast. 32(3), 914–938 (2016)

    Article  Google Scholar 

  2. Jinhua, Z., Jie, Y., Wenjing, W., Yongqian, L.: Research on short-term forecasting and uncertainty of wind turbine power based on relevance vector machine. Energy Procedia 158, 229–236 (2019)

    Article  Google Scholar 

  3. Xie, J., Hong, T., Laing, T., Kang, C.: On normality assumption in residual simulation for probabilistic load forecasting. IEEE Trans. Smart Grid 8(3), 1046–1053 (2017)

    Article  Google Scholar 

  4. Foley, A.M., Leahy, P.G., Marvuglia, A., McKeogh, E.J.: Current methods and advances in forecasting of wind power generation. Renew. Energy 37(1), 1–8 (2012)

    Article  Google Scholar 

  5. Kusiak, A., Zhang, Z.: Short-horizon prediction of wind power: a data-driven approach. IEEE Trans. Energy Convers. 25(4), 1112–1122 (2010)

    Article  Google Scholar 

  6. Lange, M., Focken, U.: Physical Approach to Short-term Wind Power Prediction. Springer, Heidelberg (2005)

    Google Scholar 

  7. Burton, N., Bossanyi, E.: Wind Energy Handbook. Wiley, Hoboken (2001)

    Book  Google Scholar 

  8. Bremnes, J.B.: A comparison of a few statistical models for making quantile wind power forecasts. Wind Energy 9(1–2), 3–11 (2006)

    Article  Google Scholar 

  9. Pinson, P., Kariniotakis, G.: Conditional prediction intervals of wind power generation. IEEE Trans. Power Syst. 25(4), 1845–1856 (2010)

    Article  Google Scholar 

  10. Khosravi, A., Nahavandi, S.: An optimized mean variance estimation method for uncertainty quantification of wind power forecasts. Electr. Power Energy Syst. 61, 446–454 (2014)

    Article  Google Scholar 

  11. Pinson, P., Girard, R.: Evaluating the quality of scenarios of short-term wind power generation. Appl. Energy 96, 12–20 (2012)

    Article  Google Scholar 

  12. Pinson, P., Nielsen, H.A., Mller, J.K., Madsen, H., Kariniotakis, G.N.: Non-parametric probabilistic forecasts of wind power: required properties and evaluation. Wind Energy 10(6), 497–516 (2007)

    Article  Google Scholar 

  13. Abbas, K., Nahavandi, S., Creighton, D.: Prediction intervals for short-term wind farm power generation forecasts. IEEE Trans. Sustain. Energy 4(3), 602–610 (2013)

    Article  Google Scholar 

  14. Abbas, K., Nahavandi, S., Creighton, D., Naghavizadeh, R: Uncertainty quantification for wind farm power generation. In: IEEE World Congress on Computational Intelligence, Australia (2012)

    Google Scholar 

  15. Hao, Q., Srinivasan, D., Abbas, K.: Short-term load and wind power forecasting using neural network-based prediction intervals. IEEE Trans. Neural Netw. Learn. Syst. 25(2), 303–315 (2014)

    Article  Google Scholar 

  16. Kavasseri, R.G., Seetharaman, K.: Day-ahead wind speed forecasting using fARIMA models. Renew. Energy 34(5), 1388–1393 (2009)

    Article  Google Scholar 

  17. Barbounis, T., Theocharis, J., Alexiadis, M., Dokopoulos, P.: Long-term wind speed and power forecasting using local recurrent neural network models. IEEE Trans. Energy Convers. 21(1), 273–284 (2006)

    Article  Google Scholar 

  18. LeCun, Y., Bengio, Y., Hinton, G.E.: Deep learning. Nature 521, 436–444 (2015)

    Article  Google Scholar 

  19. Rumelhart, D., Hinton, G., Williams, R.: Learning representations by back propagating errors. Nature 323, 533–536 (1986)

    Article  MATH  Google Scholar 

  20. Khosravi, A., Nahavandi, S., Creighton, D., Atiya, A.F.: A lower upper bound estimation method for construction of neural network-based prediction intervals. IEEE Trans. Neural Netw. 22(3), 337–346 (2011)

    Article  Google Scholar 

  21. Khosravi, A., Nahavandi, S., Creighton, D., Atiya, A.: Comprehensive review of neural ne work-based prediction intervals and new advances. IEEE Trans. Neural Netw. 22(9), 1341–1356 (2011)

    Article  Google Scholar 

  22. NIWE Homepage. http://niwe.res.in:8080/NIWE_WRA_DATA/. Accessed 20 Nov 2018

  23. SRLDC Homepage. https://srldc.in/DailyReport.aspx. Accessed 20 Nov 2018

  24. Vishnupriyadharshini, A., Vanitha, V., Palanisamy, T.: Wind speed forecasting based on statistical auto regressive integrated moving average (ARIMA) method. Int. J. Control Theory Appl. 9(15), 7681–7690 (2016)

    Google Scholar 

  25. Nair, K.R., Vanitha, V., Jisma, M.: Forecasting of wind speed using ANN, ARIMA and hybrid models. In: IEEE International Conference on Intelligent Computing, Instrumentation and Control Technologies, pp. 170–175 (2017)

    Google Scholar 

  26. Lahmiri, S.: Comparative study of ECG signal denoising by wavelet thresholding in empirical and variational mode decomposition domains. Healthc. Technol. Lett. 1(3), 104–109 (2014)

    Article  Google Scholar 

  27. https://en.wind-turbine-models.com/turbines/428-gamesa-g114-2.0mw. Accessed 24 Dec 2018

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Kirthika .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kirthika, N., Ramachandran, K.I., Kottayil, S.K. (2021). Deep Quantile Regression Based Wind Generation and Demand Forecasts. In: Abraham, A., Jabbar, M., Tiwari, S., Jesus, I. (eds) Proceedings of the 11th International Conference on Soft Computing and Pattern Recognition (SoCPaR 2019). SoCPaR 2019. Advances in Intelligent Systems and Computing, vol 1182. Springer, Cham. https://doi.org/10.1007/978-3-030-49345-5_12

Download citation

Publish with us

Policies and ethics