Abstract
Container-based virtualization has been investigated as an attractive solution to achieve isolation, flexibility and efficiency in a wide range of computational applications. In High Performance Computing, many applications rely on clusters to run multiple communicating processes using MPI (Message Passing Interface) communication protocol. Container clusters based on Docker Swarm or Kubernetes may bring benefits to HPC scenarios, but deploying MPI applications over such platforms is a challenging task. In this work, we propose a self-content Docker Swarm platform capable of supporting MPI applications, and validate it though the performance characterization of a meteorological scientific application.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
- 2.
- 3.
- 4.
- 5.
- 6.
- 7.
- 8.
- 9.
References
Ali, M., Vlaskamp, J.H.A., Eddin, N.N., Falconer, B., Oram, C.: Technical development and socioeconomic implications of the Raspberry Pi as a learning tool in developing countries. In: Computer Science and Electronic Engineering Conference (CEEC), pp. 103–108. IEEE (2013)
Alvarez, L., Ayguade, E., Mantovani, F.: Teaching HPC systems and parallel programming with small-scale clusters. In: 2018 IEEE/ACM Workshop on Education for High-Performance Computing (EduHPC), pp. 1–10, November 2018. https://doi.org/10.1109/EduHPC.2018.00004
Azab, A.: Enabling Docker containers for high-performance and many-task computing. In: 2017 IEEE International Conference on Cloud Engineering (IC2E), pp. 279–285, April 2017. https://doi.org/10.1109/IC2E.2017.52
Barker, D.: Setting up an ARM-based micro-cluster and running the WRF weather model, March 2014. http://supersmith.com/site/ARM.html
de Bayser, M., Cerqueira, R.: Integrating MPI with Docker for HPC. In: 2017 IEEE International Conference on Cloud Engineering (IC2E), pp. 259–265, April 2017. https://doi.org/10.1109/IC2E.2017.40
Beserra, D., Pinheiro, M.K., Souveyet, C., Steffenel, L.A., Moreno, E.D.: Performance evaluation of OS-level virtualization solutions for HPC purposes on SOC-based systems. In: 2017 IEEE 31st International Conference on Advanced Information Networking and Applications (AINA), pp. 363–370, March 2017. https://doi.org/10.1109/AINA.2017.73
Burns, B., Grant, B., Oppenheimer, D., Brewer, E., Wilkes, J.: Borg, omega, and kubernetes. Commun. ACM 59(5), 50–57 (2016). https://doi.org/10.1145/2890784
Chung, M.T., Quang-Hung, N., Nguyen, M., Thoai, N.: Using docker in high performance computing applications. In: 2016 IEEE Sixth International Conference on Communications and Electronics (ICCE), pp. 52–57, July 2016. https://doi.org/10.1109/CCE.2016.7562612
HPC Advisory Council: Weather research and forecasting (WRF): performance benchmark and profiling, best practices of the HPC advisory council. Technical report, HPC Advisory Council (2010). http://www.hpcadvisorycouncil.com/pdf/WRF_Analysis_and_Profiling_Intel.pdf
Cox, S.J., Cox, J.T., Boardman, R.P., Johnston, S.J., Scott, M., O’brien, N.S.: Iridis-pi: a low-cost, compact demonstration cluster. Cluster Comput. 17(2), 349–358 (2014). https://doi.org/10.1007/s10586-013-0282-7
Docker Inc.: Use swarm mode routing mesh. https://docs.docker.com/engine/swarm/ingress/
Felter, W., Ferreira, A., Rajamony, R., Rubio, J.: An updated performance comparison of virtual machines and Linux containers. IBM technical report RC25482 (AUS1407-001), Computer Science (2014)
Higgins, J., Holmes, V., Venters, C.: Orchestrating docker containers in the HPC environment. In: Kunkel, J.M., Ludwig, T. (eds.) ISC High Performance 2015. LNCS, vol. 9137, pp. 506–513. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-20119-1_36
Iveson, S.: TCP/IP over VXLAN bandwidth overheads, March 2014. https://packetpushers.net/vxlan-udp-ip-ethernet-bandwidth-overheads/
Joy, A.M.: Performance comparison between Linux containers and virtual machines. In: International Conference on Advances in Computer Engineering and Applications (ICACEA), pp. 342–346. IEEE (2015)
Kurtzer, G.M., Sochat, V., Bauer, M.W.: Singularity: scientific containers for mobility of compute. PLoS ONE 12(5), 1–20 (2017). https://doi.org/10.1371/journal.pone.0177459
Langkamp, T., Böhner, J.: Influence of the compiler on multi-CPU performance of WRFv3. Geosci. Model Dev. 4(3), 611–623 (2011). https://doi.org/10.5194/gmd-4-611-2011. https://www.geosci-model-dev.net/4/611/2011/
Manohar, N.: A survey of virtualization techniques in cloud computing. In: Chakravarthi, V., Shirur, Y., Prasad, R. (eds.) VCASAN-2013. LNEE, vol. 258, pp. 461–470. Springer, Cham (2013). https://doi.org/10.1007/978-81-322-1524-0_54
Molano, J.I.R., Betancourt, D., Gómez, G.: Internet of Things: a prototype architecture using a Raspberry Pi. In: Uden, L., Heričko, M., Ting, I.-H. (eds.) KMO 2015. LNBIP, vol. 224, pp. 618–631. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21009-4_46
Montella, R., Giunta, G., Laccetti, G.: Virtualizing high-end GPGPUS on ARM clusters for the next generation of high performance cloud computing. Cluster Comput. 17(1), 139–152 (2014). https://doi.org/10.1007/s10586-013-0341-0
MPI Forum: MPI: A message-passing interface standard version 3.1. https://www.mpi-forum.org/docs/
Nguyen, N., Bein, D.: Distributed MPI cluster with Docker Swarm mode. In: 2017 IEEE 7th Annual Computing and Communication Workshop and Conference (CCWC), pp. 1–7, January 2017. https://doi.org/10.1109/CCWC.2017.7868429
Ruiz, C., Jeanvoine, E., Nussbaum, L.: Performance evaluation of containers for HPC. In: HunoldHunold, S., et al. (eds.) Euro-Par 2015. LNCS, vol. 9523, pp. 813–824. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-27308-2_65
Skamarock, W.C., et al.: A description of the advanced research WRF version 3. NCAR technical note. National Center for Atmospheric Research, Boulder, Colorado, USA (2008)
Somasundaram, T.S., Govindarajan, K.: CLOUDRB: a framework for scheduling and managing High-Performance Computing (HPC) applications in science cloud. Future Gen. Comput. Syst. 34, 47–65 (2014)
Steffenel, L.A., Kirsch Pinheiro, M.: When the cloud goes pervasive: approaches for IoT PaaS on a mobiquitous world. In: Mandler, B., et al. (eds.) IoT360 2015. LNICST, vol. 169, pp. 347–356. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-47063-4_36
Steffenel., L.A., Charão., A.S., da Silva Alves., B.: A containerized tool to deploy scientific applications over SOC-based systems: the case of meteorological forecasting with WRF. In: Proceedings of the 9th International Conference on Cloud Computing and Services Science - Volume 1: CLOSER, pp. 561–568. INSTICC, SciTePress (2019). https://doi.org/10.5220/0007799705610568
Trahay, F., Rue, F., Faverge, M., Ishikawa, Y., Namyst, R., Dongarra, J.: EZTrace: a generic framework for performance analysis. In: 2011 11th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing, pp. 618–619. IEEE (2011)
Weloli, J.W., Bilavarn, S., Vries, M.D., Derradji, S., Belleudy, C.: Efficiency modeling and exploration of 64-bit ARM compute nodes for exascale. Microprocess. Microsyst. 53, 68–80 (2017). https://doi.org/10.1016/j.micpro.2017.06.019. http://www.sciencedirect.com/science/article/pii/S0141933116304537
Wolf, W., Jerraya, A.A., Martin, G.: Multiprocessor system-on-chip (MPSoC) technology. IEEE Trans. Comput.-Aided Des. Integr. Circ. Syst. 27(10), 1701–1713 (2008)
Xavier, M.G., Neves, M.V., Rossi, F.D., Ferreto, T.C., Lange, T., De Rose, C.A.F.: Performance evaluation of container-based virtualization for high performance computing environments. In: 2013 21st Euromicro International Conference on Parallel, Distributed, and Network-Based Processing, pp. 233–240, February 2013. https://doi.org/10.1109/PDP.2013.41
Yong, C., Lee, G.W., Huh, E.N.: Proposal of container-based HPC structures and performance analysis. J. Inf. Process. Syst. 14(6), 1398–1404 (2018)
Younge, A.J., Henschel, R., Brown, J.T., von Laszewski, G., Qiu, J., Fox, G.C.: Analysis of virtualization technologies for high performance computing environments. In: IEEE 4th International Conference on Cloud Computing, CLOUD 2011, pp. 9–16. IEEE Computer Society, Washington, DC (2011)
Acknowledgements
This research has been partially supported by the French-Brazilian CAPES-COFECUB MESO project (http://meso.univ-reims.fr) and the GREEN-CLOUD project (http://www.inf.ufrgs.br/greencloud/) (#16/2551-0000 488-9), from FAPERGS and CNPq Brazil, program PRONEX 12/2014.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Steffenel, L.A., Charão, A.S., Alves, B., de Araujo, L.R., da Silva, L.F. (2020). MPI to Go: Container Clusters for MPI Applications. In: Ferguson, D., Méndez Muñoz, V., Pahl, C., Helfert, M. (eds) Cloud Computing and Services Science. CLOSER 2019. Communications in Computer and Information Science, vol 1218. Springer, Cham. https://doi.org/10.1007/978-3-030-49432-2_10
Download citation
DOI: https://doi.org/10.1007/978-3-030-49432-2_10
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-49431-5
Online ISBN: 978-3-030-49432-2
eBook Packages: Computer ScienceComputer Science (R0)