
Lawrence Berkeley National Laboratory
LBL Publications

Title
Performance Analysis of GPU Programming Models Using the Roofline Scaling Trajectories

Permalink
https://escholarship.org/uc/item/5nv5d9b2

ISBN
9783030495558

Authors
Ibrahim, Khaled Z
Williams, Samuel
Oliker, Leonid

Publication Date
2020

DOI
10.1007/978-3-030-49556-5_1
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/5nv5d9b2
https://escholarship.org
http://www.cdlib.org/


Performance Analysis of GPU Programming
Models Using the Roofline Scaling Trajectories

Khaled Z. Ibrahim, Samuel Williams, and Leonid Oliker

Lawrence Berkeley National Laboratory,
One Cyclotron Road, Berkeley, CA 94720, USA
kzibrahim, swwilliams, loliker@lbl.gov

Abstract. Performance analysis is a daunting job, especially for the
rapid-evolving accelerator technologies. The Roofline Scaling Trajecto-
ries technique aims at diagnosing various performance bottlenecks for
GPU programming models through the visually intuitive Roofline plots.
In this work, we introduce the use of the Roofline Scaling Trajectories to
capture major performance bottlenecks on NVIDIA Volta GPU architec-
tures, such as warp efficiency, occupancy, and locality. Using this analysis
technique, we explain the performance characteristics of the NAS Parallel
Benchmarks (NPB) written with two programming models, CUDA and
OpenACC. We present the influence of the programming model on the
performance and scaling characteristics. We also leverage the insights of
the Roofline Scaling Trajectory analysis to tune some of the NAS Parallel
Benchmarks, achieving up to 2× speedup.

Keywords: Roofline Model, Performance Analysis, Parallel Scaling, GPU, Ope-
nACC, CUDA.

1 Introduction

Accelerator technologies are nowadays prevalent in HPC computing. The top
two machines in the top500 list [17] of June 2019 are based on NVIDIA Volta
GPUs. The trend of using accelerator stems from the difficulty to improve the
performance of general-purpose cores based on CMOS technologies. The intro-
duction of GPU to general-purpose computing, although almost being more than
a decade old, is still a complex endeavor for many application developers. Part of
the difficulty is due to the architectural model, which impact how data should be
layed out for optimal performance, the memory consistency model which affects
handling data dependencies, the control-flow with its impact on lock-step exe-
cution, and the tradeoffs between doing recomputation or loading precomputed
data.

Performance analysis for accelerator architectures is a daunting process. Per-
formance tools, such as NVIDIA nvprof or Intel Vtune, could provide access to
numerous hardware events capturing various events that could correlate to the



2 Khaled Z. Ibrahim, Samuel Williams, and Leonid Oliker

observed performance. They may always not provide a notion of performance
optimality, needed to assess whether further optimizations are needed.

For GPUs, metrics such as warp efficiency and occupancy are known to in-
fluence the observed performance, but there no agreed-upon method to assess
the dependency of the observed performance on these metrics, or how impactful
are these metrics on performance.

To this end, this paper introduces the use of Roofline Scaling Trajectories [10]
to analyze the performance of GPU architectures. Specifically, we show how the
Roofline Scaling Trajectory method stresses various architectural features as we
change the number of GPU SMs involved in the computations. As such, these
trajectories reveal the efficiency of GPU warp execution, the level of occupancy
while changing the GPU SM count, and the efficiency in handling the temporal
locality of the shared last level cache. The scaling trajectories shows the impact
of the above inefficiencies against the GPU performance limits that is a func-
tion of the arithmetic intensity of the algorithm. We perform the analysis for
several NAS Parallel Benchmarks [2] ported to the GPU architecture using the
CUDA programming model and the pragma-based OpenACC model.

We proposed the use of the Roofline Scaling Trajectories to reveal the root
cause of various performance inefficiencies. We show how to visually associate
the scaling trajectories to various sorts of warp inefficiencies, including those due
to branch divergence and those related to latency divergence, and occupancy
degradation due to the lack of thread block parallelism. Moreover, the Roofline
Scaling Trajectories has been shown [10] to reveal cache thrashing effects and its
impact on temporal locality as we scale applications. Identifying the performance
bottleneck of applications, we leveraged these insights in tuning the performance
of two of the NAS benchmarks, achieving up to a 2× improvement.

The rest of this paper is organized as follows. § 2 presents the motivation of
this study. We summarize the performance influencing factors for GPU program-
ming in § 3. The programming model used for offloading computation to GPU
accelerator and experimental setup are presented in §4 and § 6, respectively. We
introduce our novel performance analysis technique based on scaling trajectories
in § 5. We show the effectiveness of the proposed analysis technique in studying
various NPB in § 7, and our tuning efforts based on the introduced analysis in
§ 8. We finally present related work in § 9 and conclude in § 10.

2 Motivation

The performance of two GPU ports of NPB 3.3, detailed in Section 6.1, is shown
in Figure 1. The first is based on OpenACC directives [15], and the other is based
on the CUDA programming model [6]. We run the problem sizes, or classes,
that could fit in the GPU memory for each implementation. We present strong
scaling behavior while changing the number of SMs involved in the computation
for multiple problem sizes. To conduct these experiments, we leveraged a new
feature of the Volta architecture to enable Multi-Process Service (MPS) [14]. The
hardware support for MPS allows dedicating a subset of the compute resources



GPU Roofline Scaling Trajectories 3

to a particular process or an application, thus achieving performance isolation
(or QoS) and address space isolation.

We could easily recognize various suboptimal performance trends. For the
OpenACC port of the NPB [19], we observe that LU and FT do not significantly
improve with the increase in SM count, while MG improves and then drop in
performance at high SM count. The performance does not improve significantly
with the increase of problem size from Class A to B or C. For the CUDA variant
of NPB [9], LU has a significant improvement with SM count. Increasing the
problem size from Class A to B further improves the performance, but the trend
is reversed when changing from Class B to C.

Unfortunately, the strong scaling curves show that there is room for improve-
ment, but they do not shed light on the causes of the observed behavior or where
the tuning effort of these GPU applications should be steered. Several profiling

MG FT CG

O
p

e
n
A

C
C

0
10

00
00

25
00

00

SM count

M
F

lo
p/

s

02 04 08 16 32 48 64 80

●
●

●

●
● ● ● ●

●

CLASS A
CLASS B
CLASS C

0
10

00
00

25
00

00

SM count

M
F

lo
p/

s

02 04 08 16 32 48 64 80

● ● ● ● ● ● ● ●

●

CLASS A
CLASS B
CLASS C

0
10

00
00

25
00

00

SM count

M
F

lo
p/

s

02 04 08 16 32 48 64 80

● ● ● ●
●

● ● ●

●

CLASS A
CLASS B

SP BT LU

O
p

e
n
A

C
C

0
10

00
00

25
00

00

SM count

M
F

lo
p/

s

02 04 08 16 32 48 64 80

● ●
●

●
● ● ● ●

●

CLASS A
CLASS B

0
10

00
00

25
00

00

SM count

M
F

lo
p/

s

02 04 08 16 32 48 64 80

●
●

●
●

● ● ● ●

●

CLASS A
CLASS B

0
10

00
00

25
00

00

SM count

M
F

lo
p/

s

02 04 08 16 32 48 64 80

● ● ● ● ● ● ● ●

●

CLASS A
CLASS B

C
U

D
A

0
10

00
00

25
00

00

SM count

M
F

lo
p/

s

02 04 08 16 32 48 64 80

●
●

●

●

●

●
● ●

●

CLASS A
CLASS B
CLASS C

0
10

00
00

25
00

00

SM count

M
F

lo
p/

s

02 04 08 16 32 48 64 80

● ●
●

●

●

● ● ●

●

CLASS A
CLASS B
CLASS C

0
10

00
00

25
00

00

SM count

M
F

lo
p/

s

02 04 08 16 32 48 64 80

●

●

●

●

●

●
● ●

●

CLASS A
CLASS B
CLASS C

Fig. 1: Strong scaling of various NPB applications with the number of GPU
SM using two programming models, CUDA and OpenACC. We observe various
suboptimal scaling trends without a clear cause. The largest Class that could fit
on a single GPU depends on the programming model.
tools tries to address this challenge by showing hotspot analysis, hardware met-
rics for various architectural activities, communication, or access pattern. These



4 Khaled Z. Ibrahim, Samuel Williams, and Leonid Oliker

tools include nvprof [13], TAU [16], etc. This paper extends the Roofline Scaling
Trajectory technique [10] to demystify some of the observed performance trends.

3 Performance on GPU Architecture

The performance on a GPU is typically correlated to the efficiency of leveraging
various architectural features. The NVIDIA GPU architectures have multiple
levels of parallelism [14]: threads within a warp, warps sharing an SM, and mul-
tiple SMs within a GPU. Threads within a warp use the SIMT execution model.
The execution of a warp of threads is typically more efficient when all threads
choose the same execution path and create coalesced memory access. Earlier
generations of GPUs use a single program counter for a warp of threads, as such
the impact of a branch divergence is severe on performance. Volta GPUs provide
a program counter and stack per thread, which alleviates the need for frequent
re-convergence, but the execution remains more efficient when branch divergence
is minimized. A CUDA thread block is a software abstraction that uses multiple
warps and provides low-overhead synchronization primitives and communica-
tion through the shared memory. All warps of a thread block are scheduled
and executed on the same SM. The hardware scheduler could schedule multiple
thread warps (and possibly blocks) within an SM, assuming sufficient hardware
resources are available, including registers, shared memory, etc. All warps co-
scheduled within an SM use the same set of function units, 64 FP32 for Volta.
The number of SMs in Volta is 80. Volta can schedule up to 64 warps per SM.
Volta provides the multiprocess service (MPS) facility to allow multiple kernels
to run concurrently on the GPU and to control the number of SM assigned to
a kernel. We leveraged the MPS support in this study to control the number of
SMs used concurrently.

The efficiency of performing computation on NVIDIA GPU requires careful
consideration for the following dimensions.

– Warp efficiency within a group of threads, or SIMT efficiency, i.e., all threads
follow the same path of execution or have the same latency to execute an
instruction.

– SM Occupancy, i.e., the ability to schedule as many warps per SM as possible
to hide the long latency of accessing the memory system. This also involves
keeping GPU busy most of the time.

– Data locality, i.e., effective memory request coalescing and temporal L2 cache
access.

These objectives could be conflicting. For instance, GPU occupancy would
require pipelining small kernels, but one must provide enough parallelism to
saturate the SMs. Efficient use of the cache hierarchy may also conflict with
providing enough independent thread warps.

Ideally, a performance tool or technique would identify the performance sub-
optimality and link it to one of the above performance dimensions.



GPU Roofline Scaling Trajectories 5

4 GPU Programming Models in This Study

The benchmarks examined in this paper are written in two popular approaches
for programming accelerators: directive-based offloading, and vendor-specific
programming model (specifically CUDA for NVIDIA GPUs). The directive-
based approach is a more productive approach for porting code to GPUs, but
it may not leverage all vendor-specific architectural features. It allows for an
incremental approach for porting codes to GPUs. The use of the CUDA model
provides full control of vendor-specific hardware features, such as shared mem-
ory across threads, texture cache, etc. As such, it could provide a performance
advantage while sacrificing some portability and productivity.

The OpenACC code parallelization of the NPB relies on maintaining the
loop structure of the code, where the outer level of the loop nest is assigned to
gangs, the second level to workers, and the third to vectors. For loop nest levels
beyond three, some of the inner levels are unrolled manually. The objective of this
programming style for accelerators is to strike a balance between the achieved
performance and the coding effort to port the code. The OpenACC directive-
based approach generally preserves the code structure and data layout.

The CUDA version uses an explicit mapping of each level of the loop into
a dimension of the thread block or grid of threads. Because some of the inner
loops have small trip counts, the developer used one of the thread dimensions
to serve multiple levels of the loop nest. The developers also leveraged the GPU
shared memory for efficient communication between threads sharing an SM.

5 GPU Roofline Scaling Trajectories

In this paper, we leverage the Roofline Scaling Trajectory technique for analyzing
the performance and scalability of GPU-accelerated parallel applications. We
aim to leverage this analysis technique to identify various kinds of performance
bottlenecks that an application may experience on a GPU architecture. The
Roofline Scaling Trajectory visualizes the scaling behavior and identifies the
effects of cache and memory access locality, warp efficiency, and SM and GPU
occupancy on application performance.

Figure 2 shows an example of Roofline Scaling Trajectories curves. Nominal
machine-specific Rooflines are constructed for both the lowest and the highest
level of concurrency (2 SMs and 80 SMs on Volta). The trajectory is a trend line
of application performance and arithmetic intensity at each level of concurrency.
One may apply this analysis for the full application or individual kernels. We
use the empirical measurement technique laid out in earlier GPU Roofline stud-
ies [4,12] to characterize the machine characteristics. Our focus is mainly on the
DRAM Roofline model, where one must measure dram read transactions and
dram write transactions metrics through the NVIDIA nvprof profiling tool. We
use the FLOPs reported by the application for all concurrency level to ensure
that throughput reflects the application performance. We calculate the applica-



6 Khaled Z. Ibrahim, Samuel Williams, and Leonid Oliker

tion arithmetic intensity as follows:

AI ← cannonical flop count

(dram read trans + dram write trans)× 32
(1)

The model could be easily extended to other levels of the hierarchy as presented
in [4]. We rely on the application canonical FLOP count, estimated by the ap-
plication developer rather than on relying on the profiling tool measurements.
This allows consistent performance comparison because the number of FLOPs
could change with the run configuration due to the use of data replication and
reduction operations within a thread block, especially in the CUDA version. This
method allows for a fair comparison across programming models.

SM=2

SM=32

SM=80

Inefficiency at low SM 
count is typically correlated 
with low warp efficiency

AI degradation due to excessive HBM 
data movement to the L2 cache

Potential 
throughput 
improvement with 
AI degradation

Measured throughput 
improvement

Measured < Potential 
indicates loss of 
occupancy while 
scaling

Fig. 2: The Roofline Scaling Trajectory on GPU architectures. Each point rep-
resents the throughput at a certain SM concurrency level. We use the Roofline
Scaling Trajectories to diagnose various performance scaling bottlenecks, includ-
ing warp execution inefficiency, loss of occupancy while scaling, excessive data
movement to the cache hierarchy, etc.

Ideally, the performance should improve linearly with the increase of com-
putational resources without degrading the arithmetic intensity. On a Roofline
plot, this translates into a vertical change of throughput proportional to the
increase of computational resources while changing concurrency. In practice, an
application may experience a suboptimal change in throughput, or a change of
the arithmetic intensity while scaling, e.g., a scaling curve pending to the left.

The dominant bottleneck typically changes when strong scaling the appli-
cation. For instance, at low concurrency, it is typically difficult to saturate the
bandwidth to shared levels of the memory hierarchy. In such case, the warp effi-
ciency becomes the main limiting factor for an application to reach the Roofline.
Although lower occupancy could result in a similar effect at low concurrency,
for a kernel with non-trivial size, this is unlikely. Additionally, the lack of oc-
cupancy is easily distinguishable, as will be discussed later. As we strong-scale
the application run, observing a loss of arithmetic intensity implies some cache



GPU Roofline Scaling Trajectories 7

thrashing at the shared cache levels. The potential of throughput improvement
is typically impacted by the loss of arithmetic intensity for memory-bound ap-
plications. An occupancy reduction while scaling further lowers the observed
performance gains.

Identifying the performance bottleneck is typically the first step to steer the
optimization effort to the right problem. For instance, a warp efficiency issue
occurs due to divergent branches or inefficient data indexing that results in a
non-coalesced memory access across a thread warp. It would require particu-
lar code refactoring techniques, while loss of occupancy would require different
remedies. The occupancy issue involves dealing with two conflicting constraints.
First, improving parallelisms within a kernel requires a coarse-grained kernel
to improve the GPU occupancy. Second, reducing stalls to launch a kernel re-
quires pipelining kernel invocations by assigning a smaller task for each kernel.
Balancing the two conflicting requirements requires some tuning for each tar-
get architecture. The code should ideally be structured to handle different task
granularities.

6 Experimental Setup

6.1 Benchmark Suite

The NAS Parallel Benchmarks (NPB) [2] represent a broad set of computational
patterns. The suite uses FT for spectral methods, CG for sparse linear algebra,
LU for solving a regular-sparse lower and upper triangular system, and MG for
multigrid PDE solver using a hierarchy of meshes. In addition, the suite contains
two mini-apps, SP and BT, which carry key computational fluid dynamics (CFD)
calculations on a structured grid. They involve the solution of independent sys-
tems of block tridiagonal equations with a 5 × 5 block size. The inner block
dimensions are not friendly to warp sizes and different approaches are taken by
the CUDA [9] and OpenACC [19] implementations. The OpenACC implementa-
tion assigns the full block to a single thread, while the CUDA version split these
blocks between threads within a block. The first improves the efficiency of warp
execution, while the second enhances the level of parallelism. Unfortunately, the
CUDA authors only ported the SP, BT, and LU benchmarks.

6.2 System Setup

We conducted our experiments on the OLCF Summit supercomputer. Each sum-
mit node has two clusters of an IBM Power9 CPU and three NVIDIA Volta
GPUs. Each cluster is connected through high-speed NVLink. Each node has
a half-terabyte of coherent memory, and nodes are connected using dual-rail
Mellanox EDR InfiniBand interconnect. Our experiments focused on the perfor-
mance of a single Volta GPU. Each Volta GPU has 80 SMs each with a 256KB
register file and 96KB of unified cache/shared memory. The SMs shared 6MB of
L2 cache and 16 GB of HBM2 memory, and each GPU has a theoretical peak of
7.8 TFLOP/s in double precision.



8 Khaled Z. Ibrahim, Samuel Williams, and Leonid Oliker

7 Scaling Trajectory Analysis for Computational Kernels

Before presenting the Roofline Scaling Trajectory, we show the wrap efficiency of
various kernels for the studied set of benchmarks. The warp efficiency is defined
as the ratio of the average active threads per warp to the maximum number
of threads per warp [13]. This metric captures thread execution divergence and
typically does not change with the workload distribution across SMs. Latency
divergence for application with irregular memory access [5] has the same impact
on performance.

MG FT CG

O
p

e
n
A

C
C

re
si

d

ps
in

v

rp
rj

in
te

rp

co
m

m

Class A Class B

.

W
ar

p_
E

ffi
ci

en
cy

0.0

0.2

0.4

0.6

0.8

1.0
in

it

ev
ol

ve

cf
fts

1

cf
fts

2

cf
fts

3

Class A Class B

.

W
ar

p_
E

ffi
ci

en
cy

0.0

0.2

0.4

0.6

0.8

1.0

co
nj

_g
ra

d

m
ai

n

Class A Class B

.

W
ar

p_
E

ffi
ci

en
cy

0.0

0.2

0.4

0.6

0.8

1.0

SP BT LU

O
p

e
n
A

C
C

x_
so

lv
e

y_
so

lv
e

z_
so

lv
e

co
m

pu
te

_r
hs

Class A Class B

.

W
ar

p_
E

ffi
ci

en
cy

0.0

0.2

0.4

0.6

0.8

1.0

x_
so

lv
e

y_
so

lv
e

z_
so

lv
e

co
m

pu
te

_r
hs

Class A Class B

.

W
ar

p_
E

ffi
ci

en
cy

0.0

0.2

0.4

0.6

0.8

1.0
ja

cu

bu
ts

ja
cl

d

bl
ts rh
s

Class A Class B

.

W
ar

p_
E

ffi
ci

en
cy

0.0

0.2

0.4

0.6

0.8

1.0

C
U

D
A

x_
so

lv
e

y_
so

lv
e

z_
so

lv
e

co
m

pu
te

_r
hs

Class A Class B Class C

.

W
ar

p_
E

ffi
ci

en
cy

0.0

0.2

0.4

0.6

0.8

1.0

x_
so

lv
e

y_
so

lv
e

z_
so

lv
e

co
m

pu
te

_r
hs

Class A Class B Class C

.

W
ar

p_
E

ffi
ci

en
cy

0.0

0.2

0.4

0.6

0.8

1.0

ja
cu

_b
ut

s

ja
cl

d_
bl

ts

rh
s_

ke
rn

_x

rh
s_

ke
rn

_y

rh
s_

ke
rn

_z

Class A Class B Class C

.

W
ar

p_
E

ffi
ci

en
cy

0.0

0.2

0.4

0.6

0.8

1.0

Fig. 3: Warp efficiency for various kernels of the NPB benchmarks. Generally,
we observe higher warp efficiency for the OpenACC version compared to the
CUDA version, specifically for the BT and LU benchmarks. Warp efficiency re-
mains constant while changing the SM count and could change with the problem
size.



GPU Roofline Scaling Trajectories 9

Figure 3 shows the warp efficiency for various kernels of each NPB applica-
tion. Generally, the OpenACC port has a higher warp efficiency compared with
the CUDA port, especially for the BT and LU. Changing the dataset size (i.e.,
the Class) could result in improvement of the warp efficiency, such as in the case
of CUDA LU, or reduction in efficiency as in the case of OpenACC BT, or may
have irregular change as with the CUDA SP. We will show that warp efficiency,
as well as the indexing scheme of the arrays, influences the performance at low
SM concurrency.

Figure 4 shows the Roofline line scaling behavior of the NPB applications.
First, we observe that all applications are memory-bound based on their arith-
metic intensity. As such, we simplified the Roofline architectural limits by re-
moving the fused multiply-add ceiling for the compute-bound region as it is
unattainable. The CUDA LU and OpenACC MG show the most noticeable
change in AI, during strong or weak scaling. For BT, we notice a better effi-
ciency at low concurrency for the OpenACC implementation compared with the
CUDA variant due to the better warp efficiency, but the CUDA variant has a
better occupancy when scaling. Except for CG and LU, OpenACC implemen-
tations have a high starting efficiency, due to the better warp efficiency. The
OpenACC CG warps have a low efficiency at low concurrency that is due to the
latency divergence [5], which reduces the warp efficiency. Importantly, this sort of
warp inefficiency is typically not captured by the nvprof metric, but is captured
by the Roofline Scaling Trajectory. The CUDA BT low warp efficiency mani-
fests at low SM count in the Roofline scaling plot. For applications where both
OpenACC and CUDA implementation exist, the arithmetic intensity is higher
for the CUDA implementation, i.e., less data movement to the L2 cache is in-
volved, which is critical for achieving a higher performance for memory-bound
applications.

For CUDA LU and SP, we observe the loss of arithmetic intensity as we
change the problem class (size). For LU, increasing the problem size improves
the GPU occupancy, as such change from Class A to B results in performance
improvement. For Class C, the reduction in arithmetic intensity, due to exces-
sive data movement, reduced the overall gains. We observe a similar but less
profound trend for SP. For OpenACC MG, we observe a performance exceeding
the memory bound at low concurrency due to the efficient reuse of the L2 data.
This results in arithmetic intensity improvement with weak-scaling at low con-
currency. As one strong scales, the arithmetic intensity is reduced, especially at
high concurrency.

For the OpenACC LU, we notice both low efficiency at small scale and subop-
timal occupancy improvement as one strong scales. There is a slight improvement
with the change of SM count. This application has a GPU occupancy problem
that manifests at low SM count, as will be discussed later. For the CUDA LU,
we notice the improvement at low concurrency while increasing the problem size,
which correlates with the warp-efficiency improvement.

The change in occupancy affects the strong scaling behavior of applications.
An application needs enough parallelism to saturate all available SMs to achieve



10 Khaled Z. Ibrahim, Samuel Williams, and Leonid Oliker

MG FT CG

O
p

e
n
A

C
C

0.01 0.02 0.05 0.10 0.20 0.50 1.00

1
5

50
50

0

Arithmetic Intensity (Flops/Byte)

G
F

lo
p/

s

HBM(SMs=80) (829)

HBM(SMs=2) (35)

●

●

●

●
●●●●

roofline_summary_Total_a_MG_c_ACC

●

Class A
Class B
Class C

0.01 0.02 0.05 0.10 0.20 0.50 1.00

1
5

50
50

0

Arithmetic Intensity (Flops/Byte)

G
F

lo
p/

s

HBM(SMs=80) (829)

HBM(SMs=2) (35)
●

●

●

●●●●●

roofline_summary_Total_a_FT_c_ACC

●

Class A
Class B
Class C

0.01 0.02 0.05 0.10 0.20 0.50 1.00

1
5

50
50

0

Arithmetic Intensity (Flops/Byte)

G
F

lo
p/

s

HBM(SMs=80) (829)

HBM(SMs=2) (35)
●

●

●

●

●

●
●
●

roofline_summary_Total_a_CG_c_ACC

●

Class A
Class B
Class C

SP BT LU

O
p

e
n
A

C
C

0.1 0.2 0.5 1.0

1
5

50
50

0

Arithmetic Intensity (Flops/Byte)

G
F

lo
p/

s

HBM(SMs=80) (829)

HBM(SMs=2) (35)

●

●

●

●
●●

●●

roofline_summary_Total_a_SP_c_ACC

●

Class A
Class B

0.01 0.02 0.05 0.10 0.20 0.50 1.00 2.00

1
5

50
50

0

Arithmetic Intensity (Flops/Byte)
G

F
lo

p/
s

HBM(SMs=80) (8
29)

HBM(SMs=2) (3
5)

●

●

●

●
●●●●

roofline_summary_Total_a_BT_c_ACC

●

Class A
Class B

0.1 0.2 0.5 1.0 2.0

1
5

50
50

0

Arithmetic Intensity (Flops/Byte)

G
F

lo
p/

s

HBM(SMs=80) (829)

HBM(SMs=2) (35)

●

●

●

●●●●●

roofline_summary_Total_a_LU_c_ACC

●

Class A
Class B

C
U

D
A

0.1 0.2 0.5 1.0

1
5

50
50

0

Arithmetic Intensity (Flops/Byte)

G
F

lo
p/

s

HBM(SMs=80) (829)

HBM(SMs=2) (35)
●

●

●

●

●
●●

●

roofline_summary_Total_a_SP_c_CUDA

●

Class A
Class B
Class C

0.01 0.02 0.05 0.10 0.20 0.50 1.00 2.00

1
5

50
50

0

Arithmetic Intensity (Flops/Byte)

G
F

lo
p/

s

HBM(SMs=80) (8
29)

HBM(SMs=2) (3
5)

●

●

●

●

●

●●●

roofline_summary_Total_a_BT_c_CUDA

●

Class A
Class B
Class C

0.1 0.2 0.5 1.0 2.0

1
5

50
50

0

Arithmetic Intensity (Flops/Byte)

G
F

lo
p/

s

HBM(SMs=80) (829)

HBM(SMs=2) (35)
●

●

●

●

●
●●●

roofline_summary_Total_a_LU_c_CUDA

●

Class A
Class B
Class C

Fig. 4: Roofline Scaling Trajectories for Volta GPUs. CUDA BT and Ope-
nACC LU application are limited by warp efficiency, while CUDA LU, Ope-
nACC SP, BT, FT are limited by GPU occupancy. The arithmetic intensity of
CUDA LU and OpenACC MG is noticeably affected by strong and weak scaling.

optimal performance. As discussed in Section 5, the occupancy term affects the
potential improvements while increasing the SM count. In Figure 5, we consider
the detailed SM occupancy behavior for CUDA BT and CUDA LU. For BT, we
observe a constant occupancy during both weak and strong scaling. The scaling
trajectory shows a high correlation with the measured SM occupancy behavior.

The occupancy of CUDA LU degrades with strong scaling. Increasing the
problem size improves the occupancy, and the impact is not uniform across
kernels. The jacld blts kernel is the most affected by the loss of occupancy.
The Roofline Scaling Trajectories for individual kernels captures such behavior
precisely as shown in Figure 6, both for loss of occupancy for the jacld blts
kernel, and the maintenance of good occupancy for the rhs kernel *. We notice
that the rhs kernel x has a small change in arithmetic intensity during weak
scaling compared with the rhs kernel y, z. Inspecting the code, we found a unit
strided access in the x-direction and strided jumps for the y and z direction.
Applying data transposes could typically be used to tackle such bottleneck, but
require an efficient transpose that is lower overhead than embedding the strided
access.

In general, there are two sources of loss of occupancy. One is reported by
the nvprof profiling tool as achieved occupancy during the course of executing a
kernel, and is defined as the ratio of the average active warps per active cycle to
the maximum number of warps supported on a multiprocessor [13]. We refer to



GPU Roofline Scaling Trajectories 11

Class A Class B Class C

B
T

x_
so

lv
e

y_
so

lv
e

z_
so

lv
e

co
m

pu
te

_r
hs

02
04

08
16

32
48

64
80

.

O
cc

up
an

cy

0.0

0.2

0.4

0.6

0.8

1.0

x_
so

lv
e

y_
so

lv
e

z_
so

lv
e

co
m

pu
te

_r
hs

02
04

08
16

32
48

64
80

.
O

cc
up

an
cy

0.0

0.2

0.4

0.6

0.8

1.0

x_
so

lv
e

y_
so

lv
e

z_
so

lv
e

co
m

pu
te

_r
hs

02
04

08
16

32
48

64
80

.

O
cc

up
an

cy

0.0

0.2

0.4

0.6

0.8

1.0

L
U

ja
cu

_b
ut

s

ja
cl

d_
bl

ts

rh
s_

ke
rn

_x

rh
s_

ke
rn

_y

rh
s_

ke
rn

_z

02
04

08
16

32
48

64
80

.

O
cc

up
an

cy

0.0

0.2

0.4

0.6

0.8

1.0

ja
cu

_b
ut

s

ja
cl

d_
bl

ts

rh
s_

ke
rn

_x

rh
s_

ke
rn

_y

rh
s_

ke
rn

_z

02
04

08
16

32
48

64
80

.

O
cc

up
an

cy

0.0

0.2

0.4

0.6

0.8

1.0

ja
cu

_b
ut

s

ja
cl

d_
bl

ts

rh
s_

ke
rn

_x

rh
s_

ke
rn

_y

rh
s_

ke
rn

_z

02
04

08
16

32
48

64
80

.

O
cc

up
an

cy
0.0

0.2

0.4

0.6

0.8

1.0

Fig. 5: Occupancy of CUDA Kernels with various Classes. LU suffers occupancy
loss as we change the SM count, while BT has a stable occupancy for all con-
currency levels.

rhs kern x rhs kern y, z

0.1 0.2 0.5 1.0 2.0

1
5

50
50

0

Arithmetic Intensity (Flops/Byte)

G
F

lo
p/

s

HBM(SMs=80) (829)

HBM(SMs=2) (35)
●

●

●

●

●

●
●●

roofline_summary_rhs_kernel_x_a_LU_c_CUDA

●

Class A
Class B
Class C

0.1 0.2 0.5 1.0 2.0

1
5

50
50

0

Arithmetic Intensity (Flops/Byte)

G
F

lo
p/

s

HBM(SMs=80) (829)

HBM(SMs=2) (35)
●

●

●

●

●
●●●

roofline_summary_rhs_kernel_z_a_LU_c_CUDA

●

Class A
Class B
Class C

Fig. 6: CUDA LU scaling trajectories for individual kernels. The potential for
performance scaling is significantly influenced by the change in arithmetic inten-
sity for rhs kernel y, z, caused by strided access, compared with rhs kernel x.



12 Khaled Z. Ibrahim, Samuel Williams, and Leonid Oliker

this type as SM occupancy. The second is due to the idle time between launching
kernels due to kernel invocation overhead, waiting for data movement between
the host and the GPU, etc. We refer to this type as GPU occupancy. Ideally,
we need to minimize the second type of occupancy loss because an idle GPU
results in no use for all the SMs. Sources of this loss of occupancy include launch
overhead and CPU pre-processing to launch a kernel. To quantify the CPU
overhead to invoke a kernel on the GPU, we multiply the number of invocations
by the uncontended latency for an invocation. We estimate the uncontended
latency using the minimum observed at run time. We account not only for kernel
invocation but also for other CUDA routines, such as cudaMemcpy. Our aim is
to avoid considering the contention due to busy activity on the GPU as part of
the GPU idle time.

Depending on the programming model, the number of device invocations
could be significant. In general, we observed higher kernel invocation count in
the OpenACC port compared with the CUDA port due to the incremental ap-
proach for porting each kernel. To preserve the loop structure for the CPU and
device offload case when porting a routine with multiple loops using OpenACC,
developers must individually annotate each of the loops, and the compiler must
generate a kernel for each loop. The application most impacted by the invoca-
tion count is OpenACC LU. The OpenACCimplementation does not leverage
the shared memory and as such can achieve high occupancy at low concurrency.

OpenACC CUDA OpenACC CUDA
Execution Execution Invocation Invocation

E
xe

cu
tio

n 
T

im
e 

(m
s)

0

20000

40000

60000

80000

jacu
buts
jacld
blts
rhs
Others
cuRoutines

sm(02)
sm(04)

sm(08)
sm(16)

sm(32)
sm(48)

sm(64)
sm(80)

E
xe

cu
tio

n 
T

im
e 

(m
s)

0

20000

40000

60000

80000

jacu
buts
jacld
blts
rhs
Others
cuRoutines

sm(02)
sm(04)

sm(08)
sm(16)

sm(32)
sm(48)

sm(64)
sm(80)

E
xe

cu
tio

n 
T

im
e 

(m
s)

0

20000

40000

60000

80000

jacu_buts
jacld_blts
rhs_kernel_x
rhs_kernel_y
rhs_kernel_z
Others
cuRoutines

sm(02)
sm(04)

sm(08)
sm(16)

sm(32)
sm(48)

sm(64)
sm(80)

In
vo

ca
tio

n 
C

ou
nt

0e+00

2e+05

4e+05

6e+05

8e+05

1e+06

ou
t o

f m
em

or
y

jacu
buts
jacld
blts
rhs
Others
cuRoutines

Class A
Class B

Class C

In
vo

ca
tio

n 
C

ou
nt

0e+00

2e+05

4e+05

6e+05

8e+05

1e+06 jacu_buts
jacld_blts
rhs_kernel_x
rhs_kernel_y
rhs_kernel_z
Others
cuRoutines

Class A
Class B

Class C

Fig. 7: Left two figures: execution time decomposition for both OpenACC and
CUDA for the LU benchmark - Class B. Right two Figures: Kernel invoca-
tion count for different Classes. The OpenACC invocation is roughly 5× the
CUDA version, leading to smaller granularity for kernels, which affects the oc-
cupancy and exacerbates the impact of CUDA runtime overheads.

Figure 7 depicts the invocation count for both the CUDA and the Ope-
nACC port. Both have high invocation count with the OpenACC port is about
6× the CUDA invocation count. As such, the percentage of execution time spent



GPU Roofline Scaling Trajectories 13

in these overheads could be a significant time of the total execution time, as
shown in Figure 7. The time for overhead for the OpenACC version is more
than 5× the overhead for the CUDA version. To distinguish the two kinds of
loss of occupancy, we augment the scaling trajectory with an Amdahl shadow
curve, which shows the maximum attainable throughput if all CUDA overheads
are removed. The remaining loss of occupancy is due to limited concurrency
during the kernel scaling. As shown in Figure 9 for LU application, when the
shadow curve hits the roofline, like the CUDA case, the application is suffering
solely from GPU occupancy issue (no GPU activity due to overheads). When the
shadow curve does not hit the roofline, like the OpenACC case, the application
is suffering from active SM occupancy issue in addition to the inactive GPU
issue.

Occupancy Warp Efficiency

B
a
se

li
n
e

x_
so

lv
e

y_
so

lv
e

z_
so

lv
e

co
m

pu
te

_r
hs

02
04

08
16

32
48

64
80

.

O
cc

up
an

cy

0.0

0.2

0.4

0.6

0.8

1.0
x_

so
lv

e

y_
so

lv
e

z_
so

lv
e

co
m

pu
te

_r
hs

Class A Class B Class C

.

W
ar

p_
E

ffi
ci

en
cy

0.0

0.2

0.4

0.6

0.8

1.0

O
p
ti

m
iz

e
d

x_
so

lv
e

y_
so

lv
e

z_
so

lv
e

co
m

pu
te

_r
hs

02
04

08
16

32
48

64
80

.

O
cc

up
an

cy

0.0

0.2

0.4

0.6

0.8

1.0

x_
so

lv
e 

y_
so

lv
e 

z_
so

lv
e 

 

co
m

pu
te

_r
hs

 

Class A Class B Class C

.

W
ar

p_
E

ffi
ci

en
cy

0.0

0.2

0.4

0.6

0.8

1.0

Fig. 8: Tuning tile size for BT and its impact on occupancy and warp efficiency.
The best performing variant at the bottom sees improved warp efficiency at the
cost of reduced occupancy, but the occupancy does not degrade with SM count.



14 Khaled Z. Ibrahim, Samuel Williams, and Leonid Oliker

7.1 GPU Cache Impact on Scaling Trajectories

We note that the overall capacity of the L1/shared memory1 exceed the L2 ca-
pacity starting with a concurrency level of 48 SMs. Similarly, the register file
capacity2 exceed the L2 capacity starting with a concurrency level of 24 SMs.
As such, leveraging the L2 temporal locality becomes hard to achieve beyond
a certain concurrency level, unless the compiler or the programmer annotates
memory accesses with appropriate cache hints to distinguish streaming memory
accesses from accesses likely to leverage temporal locality. Moreover, while L2
could be effective in filtering traffic to the memory at low concurrency, the L1
surpass the the L2 in filtering effect at high concurrency leading to the improved
arithmetic intensity applications with high SM concurrency. This arithmetic in-
tensity trajectory reversal appears in multiple kernels including the Class C LU
rhs kernel y routine, which we initially thought to be a performance anomaly.

OpenACC LU CUDA LU

0.1 0.2 0.5 1.0 2.0

1
5

50
50

0

Arithmetic Intensity (Flops/Byte)

G
F

lo
p/

s

HBM(SMs=80) (829)

HBM(SMs=2) (35)

●

●

●

●●●●●

roofline_summary_Total_a_LU_c_ACC.amdahl

●

Class A
Class B
Amdahl Shadow

0.1 0.2 0.5 1.0 2.0

1
5

50
50

0

Arithmetic Intensity (Flops/Byte)

G
F

lo
p/

s

HBM(SMs=80) (829)

HBM(SMs=2) (35)
●

●

●

●

●
●●●

roofline_summary_Total_a_LU_c_CUDA.amdahl

●

Class A
Class B
Amdahl Shadow

Fig. 9: Scaling trajectories with occupancy limits due to Amdahl’s law serializa-
tion factor for LU using OpenACC and CUDA. Hitting the roofline with Amdahl
shadow curve indicates inactive GPU occupancy issue (CUDA LU-Class B), oth-
erwise active SM occupancy is an additional factor in the observed performance
degradation.

8 Performance Tuning

While the main focus of this study is to develop a performance diagnostic tech-
nique, we explored the performance tuning for a couple of cases of the studied
kernels, the CUDA BT and OpenACC FT. For the CUDA BT, the scaling tra-
jectories reveal inefficiency at low concurrency, a symptom of a warp inefficiency
issue. Inspecting the code, we found that a tuning parameter controls the num-
ber of 5× 5 blocks that are assigned to a thread block and could be loaded into
the shared memory. Increasing the block count leads to a reduced occupancy, as

1 Volta configurable L1 cache/shared memory capacity is 128KB per SM.
2 Volta register file is 256KB per SM.



GPU Roofline Scaling Trajectories 15

fewer threads blocks could share an SM, but it increases the efficiency. We ex-
plored different value for this parameter, and we found the best blocking value at
4× the default value. The performance improvement ranged from 32-41% at full
concurrency for the three problem sizes. In Figure 8, we present the change in
occupancy and warp efficiency before and after changing the blocking factor. Im-
proving warp efficiency is key to performance. The reduction in occupancy does
not hurt the performance as long there is no drop in occupancy as we change
the SM count. This reduction in occupancy in this particular case is due to the
decrease in thread block count and warps sharing an SM. The improvement in
efficiency is 2.47×, while the drop in occupancy is 1.33×.

The second example is the OpenACC FT implementation, which is one of
the applications that did not show efficient scaling due to poor GPU occupancy.
Analyzing the kernel-wise scaling trajectory, we found that the bottleneck is part
of the initialization routine, which is included in the benchmark execution time.
On earlier generations of GPUs, the overhead of this phase is small compared
with the rest of the execution time. On Volta, parallelization of the initialization
part provided a 2× speedup for the whole benchmark. Overall, identifying the
source of the performance degradation is half the road to tuning the application.
The main limitation of the proposed technique is that it is mainly applicable at
the kernel-level granularity.

9 Related Work

Performance analysis techniques can be categorized into two complementary
classes: microscopic analysis, which relies on hardware events associated with a
kernel invocation or a line of the source code, and macroscopic analysis, which
focuses on system utilization or use efficiency.

Attributing hardware events—such as cycle count, cache misses or vector-
ization efficiency—to the source code steers the optimization efforts to hotspots
within the program. Numerous tools, such as Intel Vtune [11] the CrayPAT [7],
HPCToolkit [1] Tau [16] Scalsca [3], provide effective communication of underly-
ing events and typically rely on sampling techniques to reduce overhead. These
tools may not assess the potential for performance improvement.

The roofline technique can be classified as a macroscopic analysis technique
that compares the application performance relative to realistic architectural lim-
its that vary with the application arithmetic intensity. It identifies when the per-
formance hits the machine limits. Various methods are typically used to charac-
terize the application arithmetic intensity, including DRAM-based roofline tech-
nique [18] and the cache-aware roofline Model (CARM) [8], which considers the
data movement to the L1 cache. The roofline method has been extended to dif-
ferent cache levels, incorporated into production quality tools such as Vtune [8],
and is recently extended to the GPU architectures [4], but the main focus of
these efforts is for the performance at the full node concurrency.

The roofline scaling trajectory [10] has recently been introduced for CPU-
based architectures, where it is used to study the interaction with the cache



16 Khaled Z. Ibrahim, Samuel Williams, and Leonid Oliker

hierarchy. In this work, we extend its use to the performance analysis for GPU
architectures and show its effectiveness in exposing various performance bottle-
necks such as warp efficiency and SM occupancy. We also show the influence of
the programming model on various performance bottlenecks.

10 Conclusions

In this paper, we introduce the use of the Roofline Scaling Trajectory tech-
nique for analyzing GPU-accelerated workloads. The technique leverages a new
NVIDIA Volta capability that allows controlling the number of SMs. The in-
troduced method intuitively visualizes various performance bottlenecks such as
warp inefficiency, suboptimal SM occupancy, in addition to characterizing the
efficiency of utilizing the cache hierarchy for capturing locality. We used this
analysis technique to study two implementations of NAS benchmarks using the
CUDA and the OpenACC programming models. Our analysis reveals the per-
formance bottlenecks of the studied applications and the influence of the pro-
gramming model on warp efficiency, SM occupancy, and memory access. We
leveraged these insights to tune two of the studied applications, achieving up to
a 2× improvement in run time.

Acknowledgment

This material is based on work supported by the Advanced Scientific Computing
Research Program in the U.S. Department of Energy, Office of Science, under
award number DE-AC02-05CH11231. This research used resources of the Oak
Ridge Leadership Computing Facility at the Oak Ridge National Laboratory,
which is supported by the Office of Science of the U.S. Department of Energy
under Contract No. DE-AC05-00OR22725.

References

1. Adhianto, L., Banerjee, S., Fagan, M., Krentel, M., Marin, G., Mellor-Crummey,
J., Tallent, N.R.: Hpctoolkit: Tools for performance analysis of optimized parallel
programs http://hpctoolkit.org. Concurr. Comput. : Pract. Exper. 22(6), 685–701
(Apr 2010)

2. Bailey, D., Harris, T., Saphir, W., Van Der Wijngaart, R., Woo, A., Yarrow, M.:
The NAS Parallel Benchmarks 2.0. Technical Report NAS-95-010, NASA Ames
Research Center (1995)

3. Calotoiu, A., Hoefler, T., Poke, M., Wolf, F.: Using automated performance mod-
eling to find scalability bugs in complex codes. In: SC ’13: Proceedings of the
International Conference on High Performance Computing, Networking, Storage
and Analysis. pp. 1–12 (2013)

4. Charlene Yang and Thorsten Kurth and Samuel Williams: Hierarchical Roofline
Analysis for GPUs: Accelerating Performance Optimization for the NERSC-9 Perl-
mutter System. In: Cray User Group (CUG) (May 2019)



GPU Roofline Scaling Trajectories 17

5. Chatterjee, N., O’Connor, M., Loh, G.H., Jayasena, N., Balasubramonia, R.: Man-
aging dram latency divergence in irregular gpgpu applications. In: SC ’14: Proceed-
ings of the International Conference for High Performance Computing, Networking,
Storage and Analysis. pp. 128–139 (2014)

6. Cook, S.: CUDA Programming: A Developer’s Guide to Parallel Computing with
GPUs. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1st edn. (2013)

7. Cray: The Cray Performance Measurement and Analysis Tools.
https://pubs.cray.com/content/S-2376/6.4.0/cray-performance-measurement-
and-analysis-tools-user-guide-640/craypat

8. Ilic, A., Pratas, F., Sousa, L.: Cache-aware roofline model: Upgrading the loft.
IEEE Comput. Archit. Lett. 13(1), 21–24 (Jan 2014)

9. Jörg Dümmler: A CUDA version of NPB 3.3.1. https://www.tu-
chemnitz.de/informatik/PI/sonstiges/downloads/npb-gpu/index.php.en

10. Khaled Z. Ibrahim, Samuel Williams, Leonid Oliker: Roofline Scaling Trajectories:
A Method for Parallel Application and Architectural Performance Analysis. In:
International Conference on High Performance Computing & Simulation (HPCS)
(Jun 2018)

11. Marowka, A.: On performance analysis of a multithreaded application parallelized
by different programming models using intel vtune. In: Proceedings of the 11th In-
ternational Conference on Parallel Computing Technologies. pp. 317–331. PaCT’11
(2011)

12. Measuring Roofline Quantities on NVIDIA GPUs: Porta-
bility Across DOE Office of Science HPC Facilities.
https://performanceportability.org/perfport/measurements/gpu/

13. nVidia: CUDA Profiler Users Guide. https://docs.nvidia.com/cuda/pdf/-
CUDA Profiler Users Guide.pdf

14. nVidia: NVIDIA TESLA V100 GPU ARCHITECTURE.
https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-
whitepaper.pdf

15. OpenACC STANDARD Organization: OpenACC Application Programming Inter-
face. https://www.openacc.org

16. Shende, S.S., Malony, A.D.: The tau parallel performance system. Int. J. High
Perform. Comput. Appl. 20(2), 287–311 (May 2006)

17. Top 500 Supercomputers: http://www.top500.org
18. Williams, S., Watterman, A., Patterson, D.: Roofline: An insightful visual perfor-

mance model for floating-point programs and multicore architectures. Communi-
cations of the ACM (April 2009)

19. Xu, R., Tian, X., Chandrasekaran, S., Yan, Y., Chapman, B.: Nas parallel bench-
marks for gpgpus using a directive-based programming model. In: Brodman, J.,
Tu, P. (eds.) Languages and Compilers for Parallel Computing. pp. 67–81. Springer
International Publishing, Cham (2015)




