Skip to main content

An Efficient Implementation of the ALS-WR Algorithm on x86 CPUs

  • Conference paper
  • First Online:
Benchmarking, Measuring, and Optimizing (Bench 2019)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 12093))

Included in the following conference series:

Abstract

With the continuous development of computers and big data technology, more recommendation systems are applied in the fields of online music, online movies, games, online shopping, and so on, to solve information redundancy and effectively to recommend interesting products for users. In this paper, we implement and accelerate the Alternating-Least-Squares with Weighted-\(\lambda \)-Regularization (ALS-WR) by adopting a two-level parallel strategies on the x86-64 Zen-based CPUs. As one of the most widely used recommendation algorithms, the ALS-WR algorithm is based on matrix factorization. In the mathematical discipline of linear algebra, a matrix decomposition or matrix factorization is a dimensionality reduction technique that factorizes a matrix into a product of matrices. Therefore, vector and matrix operations are the computational core of the ALS-WR algorithm, accelerating these computational kernels can effectively improve the overall performance of the ALS-WR algorithm. The experimental results show that our high-performance ALS-WR implementation can achieve 185.09 s (with 100 features and 30 iterations) on the MovieLens 20 M dataset.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bottou, L., Bousquet, O.: The tradeoffs of large scale learning. In: Advances in Neural Information Processing Systems, pp. 161–168 (2008)

    Google Scholar 

  2. Das, A.S., Datar, M., Garg, A., Rajaram, S.: Google news personalization: scalable online collaborative filtering. In: Proceedings of the 16th International Conference on World Wide Web, pp. 271–280. ACM (2007)

    Google Scholar 

  3. Deng, W., Wang, P., Wang, J., Li, C., Guo, M.: PSL: exploiting parallelism, sparsity and locality to accelerate matrix factorization on x86 platforms. In: Gao, W., et al. (eds.) Bench 2019, LNCS, vol. 12093, pp. 101–109. Springer, Cham (2019)

    Google Scholar 

  4. Frigo, M., Johnson, S.G.: FFTW: an adaptive software architecture for the FFT. In: Proceedings of the 1998 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP 1998 (Cat. No. 98CH36181), vol. 3, pp. 1381–1384. IEEE (1998)

    Google Scholar 

  5. Gao, W., et al.: AIBench: towards scalable and comprehensive datacenter AI benchmarking. In: Zheng, C., Zhan, J. (eds.) Bench 2018. LNCS, vol. 11459, pp. 3–9. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32813-9_1

    Chapter  Google Scholar 

  6. Gao, W., et al.: AIBench: an industry standard internet service ai benchmark suite. arXiv preprint arXiv:1908.08998 (2019)

  7. Gupta, P., Goel, A., Lin, J., Sharma, A., Wang, D., Zadeh, R.B.: WTF: the who-to-follow system at Twitter. In: Proceedings of the 22nd international conference on World Wide Web WWW (2013)

    Google Scholar 

  8. Hao, T., et al.: Edge AIBench: towards comprehensive end-to-end edge computing benchmarking. In: Zheng, C., Zhan, J. (eds.) Bench 2018. LNCS, vol. 11459, pp. 23–30. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32813-9_3

    Chapter  Google Scholar 

  9. Hao, T., Zheng, Z.: The implementation and optimization of matrix decomposition based collaborative filtering task on x86 platform. In: Gao, W., et al. (eds.) Bench 2019, LNCS, vol. 12093, pp. 110–115. Springer, Cham (2019)

    Google Scholar 

  10. Harper, F.M., Konstan, J.A.: The movielens datasets: history and context. ACM Trans. Interact. Intell. Syst. (TIIS) 5(4), 19 (2016)

    Google Scholar 

  11. Hou, P., Yu, J., Miao, Y., Tai, Y., Wu, Y., Zhao, C.: RVTensor: a light-weight neural network inference framework based on the RISC-V architecture. In: Gao, W., et al. (eds.) Bench 2019, LNCS, vol. 12093, pp. 85–90. Springer, Cham (2019)

    Google Scholar 

  12. Intel: Intel math kernel library (intel mkl) 2019 update 4. https://software.intel.com/en-us/mkl (2019)

  13. Jiang, Z., et al.: HPC AI500: a benchmark suite for HPC AI systems. In: Zheng, C., Zhan, J. (eds.) Bench 2018. LNCS, vol. 11459, pp. 10–22. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32813-9_2

    Chapter  Google Scholar 

  14. Li, G., Wang, X., Ma, X., Liu, L., Feng, X.: XDN: towards efficient inference of residual neural networks on cambricon chips. In: Gao, W., et al. (eds.) Bench 2019, LNCS, vol. 12093, pp. 51–56. Springer, Cham (2019)

    Google Scholar 

  15. Li, Z., et al.: AutoFFT: a template-based FFT codes auto-generation framework for arm and x86 CPUs. In: Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis, p. 25. ACM (2019)

    Google Scholar 

  16. Linden, G., Smith, B., York, J.: Amazon. com recommendations: item-to-item collaborative filtering. IEEE Internet Comput. 7(1), 76–80 (2003)

    Article  Google Scholar 

  17. Luo, C., et al.: AIoT bench: towards comprehensive benchmarking mobile and embedded device intelligence. In: Zheng, C., Zhan, J. (eds.) Bench 2018. LNCS, vol. 11459, pp. 31–35. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32813-9_4

    Chapter  Google Scholar 

  18. Makari Manshadi, F.: Scalable optimization algorithms for recommender systems (2014)

    Google Scholar 

  19. Ortega, F., Hernando, A., Bobadilla, J., Kang, J.H.: Recommending items to group of users using matrix factorization based collaborative filtering. Inf. Sci. 345, 313–324 (2016)

    Article  Google Scholar 

  20. Salakhutdinov, R., Mnih, A., Hinton, G.: Restricted Boltzmann machines for collaborative filtering. In: Proceedings of the 24th International Conference on Machine Learning, pp. 791–798. ACM (2007)

    Google Scholar 

  21. Singh, T., et al.: Zen: a next-generation high-performance\(\times \) 86 core. In: 2017 IEEE International Solid-State Circuits Conference (ISSCC), pp. 52–53. IEEE (2017)

    Google Scholar 

  22. Xianyi, Z., Qian, W., Chothia, Z.: OpenBLAS: an optimized BLAS library. https://github.com/xianyi/OpenBLAS (2019)

  23. Xiong, X., Wen, X., Huang, C.: Improving RGB-D face recognition via transfer learning from a pretrained 2D network. In: Gao, W., et al. (eds.) Bench 2019, LNCS, vol. 12093, pp. 141–148. Springer, Cham (2019)

    Google Scholar 

  24. Zhou, Y., Wilkinson, D., Schreiber, R., Pan, R.: Large-scale parallel collaborative filtering for the Netflix prize. In: Fleischer, R., Xu, J. (eds.) AAIM 2008. LNCS, vol. 5034, pp. 337–348. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-68880-8_32

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tun Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chen, M., Chen, T., Chen, Q. (2020). An Efficient Implementation of the ALS-WR Algorithm on x86 CPUs. In: Gao, W., Zhan, J., Fox, G., Lu, X., Stanzione, D. (eds) Benchmarking, Measuring, and Optimizing. Bench 2019. Lecture Notes in Computer Science(), vol 12093. Springer, Cham. https://doi.org/10.1007/978-3-030-49556-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-49556-5_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-49555-8

  • Online ISBN: 978-3-030-49556-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics