Skip to main content

Accelerating Parallel ALS for Collaborative Filtering on Hadoop

  • Conference paper
  • First Online:
Benchmarking, Measuring, and Optimizing (Bench 2019)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 12093))

Included in the following conference series:

  • 1067 Accesses

Abstract

Collaborative Filtering (CF) is an important building block of recommendation systems. Alternating Least Squares (ALS) is the most popular algorithm used in CF models to calculate the latent factor matrix factorization. Parallel ALS on Hadoop is widely used in the era of big data. However, existing work on the computational efficiency of parallel ALS on Hadoop have two defects. One is the imbalance of data distribution, the other is lacking the fine-grained parallel processing on the rating data. Aiming on these issues, we propose an integrated optimized solution. The solution first optimizes the rating data partition with the consideration of both the number of involved data records and the partitioned data size. Then, the multithread-based fine-grained parallelism is introduced to process rating data records within a map task concurrently. Experimental results demonstrate that our solution can reduce the overall runtime of Hadoop ALS by 82.17% by maximum.

Supported by 2019 BenchCouncil AI System and Algorithm Challenge.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bokde, D., Girase, S., Mukhopadhyay, D.: Matrix factorization model in collaborative filtering algorithms: a survey. J. Procedia Comput. Sci. 49(1), 136–146 (2015)

    Article  Google Scholar 

  2. Hernando, A., Bobadilla, J., Ortega, F.: A non negative matrix factorization for collaborative filtering recommender systems based on a Bayesian probabilistic model. Knowl.-Based Syst. 97(4), 188–202 (2016)

    Article  Google Scholar 

  3. Deshpande, M., Karypis, G.: Item-based top-n recommendation algorithms. ACM Trans. Inf. Syst. (TOIS) 22(1), 143–177 (2004)

    Article  Google Scholar 

  4. Hanmin, Y., Zhang, Q., Bai, X.: A new collaborative filtering algorithm based on modified matrix factorization. In: Electronic and Automation Control Conference (IAEAC), pp. 147–151. IEEE (2017)

    Google Scholar 

  5. Yang, Z., Chen, W., Huang, J.: Enhancing recommendation on extremely sparse data with blocks-coupled non-negative matrix factorization. J. Neurocomput. 278, 126–133 (2018)

    Article  Google Scholar 

  6. Herodotou, H., Dong, F., Babu, S.: Mapreduce programming and cost-based optimization crossing this chasm with starfish. J. Proc. VLDB Endowment 4(12), 1446–1449 (2011)

    Article  Google Scholar 

  7. Herodotou, H.: Hadoop performance models. J. arXiv preprint arXiv, 1106.0940(2011)

    Google Scholar 

  8. Manda, W., Michael, B., Anthony, L., Hans, D.: Algorithmic acceleration of parallel ALS for collaborative filtering: speeding up distributed big data recommendation in Spark. In: 21st International Conference on Parallel and Distributed Systems(ICPADS), pp. 682–691. IEEE (2015)

    Google Scholar 

  9. Krzysztof, F., Rafal, Z.: Distributed nonnegative matrix factorization with HALS algorithm on Apache Spark. In: Artificial Intelligence and Soft Computing - 17th International Conference (ICAISC), pp. 333–342 (2018)

    Google Scholar 

  10. Bing, T., Linyao, K., Xia, Y., Zhang, L.: GPU-accelerated large-scale non-negative matrix factorization using spark. In: Collaborative Computing: Networking, Applications and Worksharing- 14th International Conference (EAI), pp. 189–201 (2018)

    Google Scholar 

  11. Maria, M., Katayoun, N., Setareh, R., Houman, H.: Hadoop workloads characterization for performance and energy efficiency optimizations on microservers. J. IEEE Trans. Multi-Scale Comput. Syst. 4(3), 355–368 (2018)

    Article  Google Scholar 

  12. Jyotindra, T., Mahesh, P., Anjana, P.: A Hadoop based collaborative filtering recommender system accelerated on GPU using OpenCL. J. Int. J. Eng. Sci. Res. Technol. 6(9), 195–209 (2017)

    Google Scholar 

  13. Teflioudi, C., Makari, F., Gemulla, R.: Distributed matrix completion. In: 12th International Conference on Data Mining (ICDM), pp. 655–664. IEEE(2012)

    Google Scholar 

  14. Yu, H.-F., Hsieh, C.-J.,Dhillon, I., et al.: Scalable coordinate descent approaches to parallel matrix factorization for recommender systems. In: 12th International Conference on Data Mining (ICDM), pp. 765–774. IEEE(2012)

    Google Scholar 

  15. Zaharia, M., et al.: Resilient distributed datasets: a fault-tolerant abstraction for in-memory cluster computing. In: Proceedings of the 9th USENIX conference on Networked Systems Design and Implementation, pp. 15–28 (2012)

    Google Scholar 

  16. Zhou, Y., Wilkinson, D., Schreiber, R., Pan, R.: Large-scale parallel collaborative filtering for the Netflix prize. In: Proceedings of the 4th International Conference on Algorithmic Aspects in Information and Management, pp. 337–348 (2008)

    Google Scholar 

  17. Wanling, G., Fei, T., Wang, L., Zhan, J., Lan, C., et. al.: AIBench: an industry standard internet service AI benchmark suite. J. arXiv preprint arXiv:1908.08998 (2019)

  18. Gao, W., et al.: AIBench: towards scalable and comprehensive datacenter AI benchmarking. In: Zheng, C., Zhan, J. (eds.) Bench 2018. LNCS, vol. 11459, pp. 3–9. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32813-9_1

    Chapter  Google Scholar 

  19. Jiang, Z., et al.: HPC AI500: a benchmark suite for HPC AI systems. In: Zheng, C., Zhan, J. (eds.) Bench 2018. LNCS, vol. 11459, pp. 10–22. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32813-9_2

    Chapter  Google Scholar 

  20. Hao, T., Huang, Y., Wen, X., Gao, W., Zhang, F., Zheng, C., Wang, L., Ye, H., Hwang, K., Ren, Z., Zhan, J.: Edge AIBench: towards comprehensive end-to-end edge computing benchmarking. In: Zheng, C., Zhan, J. (eds.) Bench 2018. LNCS, vol. 11459, pp. 23–30. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32813-9_3

    Chapter  Google Scholar 

  21. Luo, C., et al.: AIoT bench: towards comprehensive benchmarking mobile and embedded device intelligence. In: Zheng, C., Zhan, J. (eds.) Bench 2018. LNCS, vol. 11459, pp. 31–35. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32813-9_4

    Chapter  Google Scholar 

  22. Comon, P., Luciani, X., de Almeida, A.L.F.: Tensor decompositions, alternating least squares and other tales. J. Chemom. 23, 393–405 (2009)

    Article  Google Scholar 

  23. Liu, L.: Computing infrastructure for big data processing. Front. Comput. Sci. 7, 165–170 (2013)

    Article  MathSciNet  Google Scholar 

  24. Li, G., Wang, X., Ma, X., Liu, L., Feng, X.: XDN: Towards efficient inference of residual neural networks on cambricon chips. In: Gao, W., et al. (eds.) Bench 2019, LNCS, vol. 12093, pp. 51–56. Springer, Cham (2019)

    Google Scholar 

  25. Li, J., Jiang, Z.: Performance analysis of cambricon mlu100. In: Gao, W., et al. (eds.) Bench 2019, LNCS, vol. 12093, pp. 57–66. Springer, Cham (2019)

    Google Scholar 

  26. Hou, P., Yu, J., Miao, Y., Tai, Y., Wu, Y., Zhao, C.: RVTensor: A light-weight neural network inference framework based on the RISC-V architecture. In: Gao, W., et al. (eds.) Bench 2019, LNCS, vol. 12093, pp. 85–90. Springer, Cham (2019)

    Google Scholar 

  27. Deng, W., Wang, P., Wang, J., Li, C., Guo, M.: PSL: exploiting parallelism, sparsity and locality to accelerate matrix factorization on x86 platforms. In: Gao, W., et al. (eds.) Bench 2019, LNCS, vol. 12093, pp. 101–109. Springer, Cham (2019)

    Google Scholar 

  28. Hao, T., Zheng, Z.: The implementation and optimization of matrix decomposition based collaborative filtering task on x86 platform. In: Gao, W., et al. (eds.) Bench 2019, LNCS, vol. 12093, pp. 110–115. Springer, Cham (2019)

    Google Scholar 

  29. Xiong, X., Wen, X., Huang, C.: Improving RGB-D face recognition via transfer learning from a pretrained 2D network. In: Gao, W., et al. (eds.) Bench 2019, LNCS, vol. 12093, pp. 141–148. Springer, Cham (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Liang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liang, Y., Zeng, S., Liang, Y., Chen, K. (2020). Accelerating Parallel ALS for Collaborative Filtering on Hadoop. In: Gao, W., Zhan, J., Fox, G., Lu, X., Stanzione, D. (eds) Benchmarking, Measuring, and Optimizing. Bench 2019. Lecture Notes in Computer Science(), vol 12093. Springer, Cham. https://doi.org/10.1007/978-3-030-49556-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-49556-5_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-49555-8

  • Online ISBN: 978-3-030-49556-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics