Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 12195))

Included in the following conference series:

  • 7092 Accesses

Abstract

Vision, as the main channel for humans to obtain external information, has always been a hot area of research. Especially under the current heat of research on artificial intelligence, a large amount of research has been focused on intersecting research results in psychology and neuroscience with computer science to improve simulation capabilities of computers systems. This article briefly reviews the research progress in human visual cognition processes and their simulation methods in the fields of psychology, neuro-science, and computer science. In addition, eye movement experiments were carried out and models were built based on human cognitive processes to explore the influence of factors such as prior knowledge and emotional experience on model accuracy. Furthermore, the limitations and application prospects of the model were discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Michel, C.M., Seeck, M., Murray, M.M.: The speed of visual cognition. Suppl. Clin. Neurophysiol. 57(57), 617 (2004)

    Google Scholar 

  2. Kuffler, S.W.: Discharge patterns and functional organization of mammalian retina. J. Neurophysiol. 16(1), 37–68 (1953)

    Google Scholar 

  3. Mcilwain, J.T.: Receptive fields of optic tract axons and lateral geniculate cells: peripheral extent and barbiturate sensitivity. J. Neurophysiol. 27(6), 1154–1173 (1964)

    Google Scholar 

  4. Ikeda, H., Wright, M.J.: Functional organization of the periphery effect in retinal ganglion cells. Vis. Res. 12(11), 1857 (1972)

    Google Scholar 

  5. Tovée, M.J.: An Introduction to the Visual System. Cambridge University Press, Cambridge (2008)

    Google Scholar 

  6. Mansfield, R.J.W.: Neural basis of orientation perception in primate vision. Science 186(4169), 1133–1135 (1974)

    Google Scholar 

  7. Li, Z.: A saliency map in primary visual cortex. Trends Cogn. Sci. 6, 9–16 (2002)

    Google Scholar 

  8. Li, Z.: The primary visual cortex creates a bottom-up saliency map. In: Laurent Itti, G.R., Tsotsos, J.K. (ed.) Neurobiology of Attention. Academic Press, pp. 570–575 (2005)

    Google Scholar 

  9. Gattas, R., et al.: Cortical projections of area V2 in the macaque. Cereb. Cortex 7(2), 110–129 (1997)

    Google Scholar 

  10. Stepniewska, I., Kaas, J.H.: Topographic patterns of V2 cortical connections in macaque monkeys. J. Comp. Neurol. 371(1), 129–152 (1996)

    Google Scholar 

  11. Hegdé, J., Van Essen, D.C.: Selectivity for complex shapes in primate visual area V2. J. Neurosci. 20, RC61 (2000)

    Google Scholar 

  12. Hegdé, J., Van Essen, D.C.: Temporal dynamics of shape analysis in macaque visual area V2. J. Psychol. 92(5), 3030–3042 (2004)

    Google Scholar 

  13. Anzai, A., Peng, X., Van Essen, D.C.: Neurons in monkey visual area V2 encode combinations of orientations. Nat. Neurosci. 10(10), 1313–1321 (2007)

    Google Scholar 

  14. Moran, J., Desimone, R.: Selective attention gates visual processing in the extrastriate cortex. Science 229(4715), 782–784 (1985)

    Google Scholar 

  15. Dubner, R., Zeki, S.M.: Response properties and receptive fields of cells in an anatomically defined region of the superior temporal sulcus in the monkey. Brain Res. 35(2), 528–532 (1971)

    Google Scholar 

  16. Maunsell, J.H., Van Essen, D.C.: Functional properties of neurons in middle temporal visual area of the macaque monkey. I. Selectivity for stimulus direction, speed, and orientation. J. Neurophysiol. 49(5), 1127–1147 (1983)

    Google Scholar 

  17. Born, R.T., Bradley, D.C.: Structure and function of visual area MT. Annu. Rev. Neurosci. 28, 157–189 (2005)

    Google Scholar 

  18. Dursteler, M.R., Wurtz, R.H., Newsome, W.T.: Directional pursuit deficits following lesions of the foveal representation within the superior temporal sulcus of the macaque monkey. J. Neurophysiol. 57(5), 1262–1287 (1987)

    Google Scholar 

  19. Cardin, V., Smith, A.: Sensitivity of human visual and vestibular cortical regions to stereoscopic depth gradients associated with self-motion. Cereb. Cortex 20(8), 1964–1973 (2010)

    Google Scholar 

  20. Pitzalis, S., et al.: Wide-field retinotopy defines human cortical visual area v6. J. Neurosci. Off. J. Soc. Neurosci. 26(30), 7962–7973 (2006)

    Google Scholar 

  21. Deco, G., Rolls, E.T.: A neurodynamical cortical model of visual attention and invariant object recognition. Vis. Res. 44(6), 642 (2004)

    Google Scholar 

  22. Chikkerur, S., et al.: What and where: a Bayesian inference theory of attention. Vis. Res. 50(22), 2233–2247 (2010)

    Google Scholar 

  23. Chao, L., et al.: Brain-inspired edge detection model. Comput. Eng. Appl. 53(24), 142–146 (2017)

    Google Scholar 

  24. Treisman, A.M., Gelade, G.: A feature-integration theory of attention. Cogn. Psychol. 12(1), 97–136 (1980)

    Google Scholar 

  25. Marr, D.: Vision: A Computational Investigation into the Human Representation and Processing of Visual Information. Henry Holt and Co., Inc., New York (1982)

    Google Scholar 

  26. Ullman, S.: Visual routines. Cognition 18(1–3), 97–159 (1984)

    Google Scholar 

  27. Ullman, S.: High-Level Vision: Object Recognition and Visual Cognition, vol. 2. MIT Press, Cambridge (1996)

    MATH  Google Scholar 

  28. Kahneman, D., Treisman, A., Gibbs, B.J.: The reviewing of object files - object-specific integration of information. Cogn. Psychol. 24(2), 175–219 (1992)

    Google Scholar 

  29. Pylyshyn, Z.: The role of location indexes in spatial perception: a sketch of the FINST spatial-index model. Cognition 32(1), 97 (1989)

    Google Scholar 

  30. Itti, L., Koch, C., Niebur, E.: A model of saliency-based visual attention for rapid scene analysis. IEEE Trans. Pattern Anal. Mach. Intell. 11, 1254–1259 (1998)

    Google Scholar 

  31. Potter, M.C., et al.: Detecting meaning in RSVP at 13 ms per picture. Atten. Percept. Psychophys. 76(2), 270–279 (2014)

    Google Scholar 

  32. Serre, T., Oliva, A., Poggio, T.: A feedforward architecture accounts for rapid categorization. Proc. Natl. Acad. Sci. U.S.A. 104(15), 6424–6429 (2007)

    Google Scholar 

  33. Lollo, V.D., Enns, J.T., Rensink, R.: Competition for consciousness among visual events: the psychophysics of reentrant visual processes. J. Exp. Psychol. Gen. 129(4), 481 (2000)

    Google Scholar 

  34. Enns, J.T., Lollo, V.D.: What’s new in visual masking? Trends Cogn. Sci. 4(9), 345–352 (2000)

    Google Scholar 

  35. Hochstein, S., Ahissar, M.: View from the top: hierarchies and reverse hierarchies in the visual system. Neuron 36(5), 804 (2002)

    Google Scholar 

  36. Wolfe, J.M.: Moving towards solutions to some enduring controversies in visual search. Trends Cogn. Sci. 7(2), 70–76 (2003)

    Google Scholar 

  37. Ramachandran, V.S., Hirstein, W.: The science of art: a neurological theory of aesthetic experience. J. Conscious. Stud. 6, 15–51 (1999)

    Google Scholar 

  38. Zeki, S.: Inner Vision: An Exploration of Art and the Brain. Oxford University Press, Oxford (1999)

    Google Scholar 

  39. Jacobsen, T.: Beauty and the brain: culture, history and individual differences in aesthetic appreciation. J. Anat. 216(2), 184–191 (2010)

    Google Scholar 

  40. Jacobsen, T., et al.: Brain correlates of aesthetic judgment of beauty. NeuroImage 29(1), 276–285 (2006)

    Google Scholar 

  41. Kirk, U., et al.: Brain correlates of aesthetic expertise: a parametric fMRI study. Brain Cogn. 69(2), 306–315 (2009)

    Google Scholar 

  42. Cattaneo, Z., et al.: The role of the lateral occipital cortex in aesthetic appreciation of representational and abstract paintings: a TMS study. Brain Cogn. 95, 44–53 (2015)

    Google Scholar 

  43. Cattaneo, Z., et al.: The role of prefrontal and parietal cortices in esthetic appreciation of representational and abstract art: a TMS study. NeuroImage 99, 443–450 (2014)

    Google Scholar 

  44. Cela-Conde, C.J., et al.: Dynamics of brain networks in the aesthetic appreciation. Proc. Natl. Acad. Sci. U.S.A. 110(2), 10454–10461 (2013)

    Google Scholar 

  45. Christoph, R.: Combining universal beauty and cultural context in a unifying model of visual aesthetic experience. Front. Hum. Neurosci. 9, 218 (2015)

    Google Scholar 

  46. Chatterjee, A.: Prospects for a cognitive neuroscience of visual aesthetics. Bull. Psychol. Arts 4(2), 55–60 (2003)

    Google Scholar 

  47. Nuthmann, A., Henderson, J.M.: Object-based attentional selection in scene viewing. J. Vis. 10(8), 20 (2010)

    Google Scholar 

  48. Einhäuser, W., Spain, M., Perona, P.: Objects predict fixations better than early saliency. J. Vis. 8(14), 18 (2008)

    Google Scholar 

  49. Foulsham, T., Kingstone, A.: Optimal and preferred eye landing positions in objects and scenes. Q. J. Exp. Psychol. 66(9), 1707–1728 (2013)

    Google Scholar 

  50. Juan, X., et al.: Predicting human gaze beyond pixels. J. Vis. 14(1), 28 (2014)

    Google Scholar 

  51. Bindemann, M., et al.: Faces retain attention. Psychon. Bull. Rev. 12(6), 1048–1053 (2006)

    Google Scholar 

  52. Cerf, M., Frady, E.P., Koch, C.: Faces and text attract gaze independent of the task: experimental data and computer model. J. Vis. 9(12), 10 (2009)

    Google Scholar 

  53. Vuilleumier, P.: Faces call for attention: evidence from patients with visual extinction. Neuropsychologia 38(5), 693–700 (2000)

    Google Scholar 

  54. Adolphs, R.: What does the amygdala contribute to social cognition? Ann. N. Y. Acad. Sci. 1191(1), 42–61 (2010)

    Google Scholar 

  55. Onat, S., Libertus, K., König, P.: Integrating audiovisual information for the control of overt attention. J. Vis. 7(10), 11–16 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaodong Li or Liqun Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cao, X., Fang, Y., Zhu, L., Li, X., Zhang, L. (2020). Research on Computational Simulation of Advertising Posters Visual Cognition. In: Meiselwitz, G. (eds) Social Computing and Social Media. Participation, User Experience, Consumer Experience, and Applications of Social Computing. HCII 2020. Lecture Notes in Computer Science(), vol 12195. Springer, Cham. https://doi.org/10.1007/978-3-030-49576-3_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-49576-3_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-49575-6

  • Online ISBN: 978-3-030-49576-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics