Skip to main content

Calibration of Diverse Tracking Systems to Enable Local Collaborative Mixed Reality Applications

  • Conference paper
  • First Online:
Virtual, Augmented and Mixed Reality. Design and Interaction (HCII 2020)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 12190))

Included in the following conference series:

  • 2451 Accesses

Abstract

Mixed reality (MR) devices offer advantages for a wide range of applications, e.g. simulation, communication or training purposes. Local multi user applications allow users to engage with virtual worlds collaboratively, while being in the same physical room. A shared coordinate system is necessary for this local collaboration. However, current mixed reality platforms do not offer a standardized way to calibrate multiple devices. Not all systems offer the required hardware that is used by available algorithms, either because the hardware is not available or not accessible by developers. We propose an algorithm that calibrates two devices using only their tracking data. More devices can be calibrated through repetition. Two MR devices are held together and moved around the room. Our trajectory-based algorithm provides reliable and precise results when compared to SfM or marker based algorithms. The accurate, but easy to use rotational calibration gesture can be executed effortlessly in a small space. The proposed method enables local multi user collaboration for all six degrees of freedom (DOF) MR devices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arun, K.S., Huang, T.S., Blostein, S.D.: Least-squares fitting of two 3-D point sets. IEEE Trans. Pattern Anal. Mach. Intell. 9(5), 698–700 (1987). https://doi.org/10.1109/TPAMI.1987.4767965. ISSN: 0162–8828

    Article  Google Scholar 

  2. Bai, H., Gao, L., Billinghurst, M.: 6DoF input for Hololens using vive controller. In: SIGGRAPH Asia 2017 Mobile Graphics & Interactive Applications on - SA 2017. SIGGRAPH Asia 2017 Mobile Graphics & Interactive Applications, Bangkok, Thailand, p. 1. ACM Press (2017). https://doi.org/10.1145/3132787.3132814. ISBN: 978-1-4503-5410-3

  3. Becker, T., Herrmann, R., Sandor, V., Schäfer, D., Wellisch, U.: Stochastische Risikomodellierung und statistische Methoden. SA. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49407-3

    Book  MATH  Google Scholar 

  4. de Belen, R.A.J., et al.: A Systematic review of the current state of collaborative mixed reality technologies: 2013–2018. AIMS Electron. Electr. Eng. 3(2), 181–223 (2019). https://doi.org/10.3934/ElectrEng.2019.2.181. ISSN: 2578–1588

    Article  Google Scholar 

  5. Billinghurst, M., et al.: Mixing realities in shared space: an augmented reality interface for collaborative computing. In: 2000 IEEE International Conference on Multimedia and Expo. ICME 2000. Proceedings. Latest Advances in the Fast Changing World of Multimedia (Cat. No.00TH8532), July 2000, vol. 3, pp. 1641–1644. https://doi.org/10.1109/ICME.2000.871085

  6. Bonnard, Q., et al.: Chilitags 2: Robust Fiducial Markers for Augmented Reality and Robotics (2013). http://chili.epfl.ch/software. Accessed 28 Feb 2020

  7. Microsoft Corporation. Microsoft Spatial Anchors (2019). https://azure.microsoft.com/de-de/services/spatial-anchors/. Accessed 28 Feb 02 2020

  8. Correll, K., Barendt, N., Branicky, M.: Design considerations for software only implementations of the IEEE 1588 precision time protocol. In: Conference on IEEE, vol. 1588, pp. 11–15 (2005)

    Google Scholar 

  9. Daoud, H.A., et al.: SLAMM: visual monocular SLAM with continuous mapping using multiple maps. PLoS ONE 13(4), 1932–6203 (2018). https://doi.org/10.1371/journal.pone.0195878.pmid:29702697

    Article  Google Scholar 

  10. Google Developers. Recognize and Augment Images – ARCore. https://developers.google.com/ar/develop/c/augmented-images. Accessed 28 Feb 2020

  11. Hoppe, A.H., et al.: VirtualTablet: extending movable surfaces with touch interaction. In: 2019 IEEE Conference on Virtual Reality and 3D User Interfaces (VR), March 2019, pp. 980–981. https://doi.org/10.1109/VR.2019.8797993

  12. Hoppe, A.H., Reeb, R., van de Camp, F., Stiefelhagen, R.: Capability for collision avoidance of different user avatars in virtual reality. In: Stephanidis, C. (ed.) HCI 2018. CCIS, vol. 851, pp. 273–279. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-92279-9_37

    Chapter  Google Scholar 

  13. Huo, K., et al.: SynchronizAR: instant synchronization for spontaneous and spatial collaborations in augmented reality. In: Proceedings of the 31st Annual ACM Symposium on User Interface Software and Technology. UIST 2018, Berlin, Germany, pp. 19–30. ACM (2018). https://doi.org/10.1145/3242587.3242595. ISBN: 978-1-4503-5948- 1

  14. Jain, A., Dellaert, F.: Fast 3D pose refinement with RGB images, 17 November 2019

    Google Scholar 

  15. Kalkusch, M., et al.: Structured visual markers for indoor pathfinding. In: The First IEEE International Workshop Agumented Reality Toolkit, First IEEE International Augmented Reality Toolkit Workshop, Darmstadt, Germany, p. 8. IEEE (2002). https://doi.org/10.1109/ART.2002.1107018. ISBN: 978-0-7803-7680-9

  16. Koenderink, J.J., Van Doorn, A.J.: Affine structure from motion. JOSA A 8(2), 377–385 (1991)

    Article  Google Scholar 

  17. Krohn, A., et al.: Using fine-grained infrared positioning to support the surface-based activities of mobile users. In: 25th IEEE International Conference on Distributed Computing Systems Workshops, June 2005, pp. 463–468 (2005). https://doi.org/10.1109/ICDCSW.2005.139

  18. Lang, S.: Skript Zur Vorlesung Computerintensive Verfahren in Der Statistik (2004). https://www.uibk.ac.at/statistics/personal/lang/publications/compstat_aktuell.pdf. Accessed 28 Feb 2020

  19. Liu, Y., et al.: Technical evaluation of hololens for multimedia: a first look. IEEE Multimedia 25(4), 8–18 (2018). https://doi.org/10.1109/MMUL.2018.2873473. ISSN: 1070–986X

    Article  Google Scholar 

  20. Facebook LLC. Powered by AI: Oculus Insight. https://ai.facebook.com/blog/powered-by-ai-oculus-insight/. Accessed 28 Feb 2020

  21. Google LLC. ARCore Cloud Anchor (2019). https://developers.google.com/ar/develop/java/cloud-anchors/overview-android. Accessed 28 Feb 2020

  22. Mills, D.L.: Internet time synchronization: the network time protocol. IEEE Trans. Commun. 39(10), 1482–1493 (1991)

    Article  Google Scholar 

  23. Mujber, T.S., Szecsi, T., Hashmi, M.S.J.: Virtual reality applications in manufacturing process simulation. J. Mater. Process. Technol. 155–156, 1834–1838 (2004). https://doi.org/10.1016/j.jmatprotec.2004.04.401. ISSN: 09240136

    Article  Google Scholar 

  24. Niehorster, D.C., Li, L., Lappe, M.: The accuracy and precision of position and orientation tracking in the HTC vive virtual reality system for scientific research. i-Perception 8(3), 204166951770820 (2017). https://doi.org/10.1177/2041669517708205

  25. Olson, E.: AprilTag: a robust and exible visual fiducial system. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), May 2011, pp. 3400–3407. IEEE (2011)

    Google Scholar 

  26. Powell, M.J.D.: Direct search algorithms for optimization calculations. Acta Numerica 7, 287–336 (1998). https://doi.org/10.1017/S0962492900002841. ISSN: 0962–4929, 1474–0508

    Article  MathSciNet  MATH  Google Scholar 

  27. Rehder, J., et al.: Extending Kalibr: calibrating the extrinsics of multiple IMUs and of individual axes. In: 2016 IEEE International Conference on Robotics and Automation (ICRA), May 2016, pp. 4304–4311 (2016). https://doi.org/10.1109/ICRA.2016.7487628

  28. Rhudy, M.: Time alignment techniques for experimental sensor data. Int. J. Comput. Sci. Eng. Surv. 5 (2014). https://doi.org/10.5121/ijcses.2014.5201

  29. Saito, S., et al.: Indoor marker-based localization using coded seamless pattern for interior decoration. In: 2007 IEEE Virtual Reality Conference, March 2007, pp. 67–74 (2007). https://doi.org/10.1109/VR.2007.352465

  30. Salzmann, H., Jacobs, J., Froehlich, B.: Collaborative interaction in co-located two-user scenarios. In: Proceedings of the 15th Joint virtual reality Eurographics conference on Virtual Environments. Eurographics Association, pp. 85–92 (2009)

    Google Scholar 

  31. Schönberger, J.L., Frahm, J.-M.: Structure-from-motion revisited. In: Conference on Computer Vision and Pattern Recognition (CVPR) (2016)

    Google Scholar 

  32. Schönberger, J.L., et al.: Pixelwise view selection for unstructured multi-view stereo. In: European Conference on Computer Vision (ECCV) (2016)

    Google Scholar 

  33. Scott, D.W.: Multivariate density estimation and visualization. In: Gentle, J.E., Härdle, W.K., Mori, Y. (eds.) Handbook of Computational Statistics, pp. 549–569. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-21551-3_19. ISBN: 978-3-642-21550-6 978-3-642-21551-3

    Chapter  Google Scholar 

  34. Taketomi, T., Uchiyama, H., Ikeda, S.: Visual SLAM algorithms: a survey from 2010 to 2016. IPSJ Trans. Comput. Vis. Appl. 9(1), 1–11 (2017). https://doi.org/10.1186/s41074-017-0027-2

    Article  Google Scholar 

  35. Unity Technologies. Unity3D. https://unity.com/. Accessed 28 Feb 2020

  36. Ullman, S.: The interpretation of structure from motion. Proc. Royal Soc. London. Series B. Biol. Sci. 203(1153), 405–426 (1979)

    Google Scholar 

  37. Vuforia. Image Targets. https://library.vuforia.com/articles/Training/Image-Target-Guide. Accessed 28 Feb 2020

  38. Wahlström, J., et al.: IMU-based smartphone-to-vehicle positioning. IEEE Trans. Intell. Veh. 1(2), 139–147 (2016). https://doi.org/10.1109/TIV.2016.2588978. ISSN: 2379–8904

    Article  Google Scholar 

  39. Wang, J., Olson, E.: AprilTag 2: efficient and robust fiducial detection. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), October 2016

    Google Scholar 

  40. Zheng, Z., et al.: Aristo: an augmented reality platform for immersion and interactivity. In: Proceedings of the 2017 ACM on Multimedia Conference - MM 2017. The 2017 ACM. Mountain View, California, USA, pp. 690–698. ACM Press (2017). https://doi.org/10.1145/3123266.3123308. ISBN: 978-1-4503-4906-2

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adrian H. Hoppe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hoppe, A.H., Kaucher, L., van de Camp, F., Stiefelhagen, R. (2020). Calibration of Diverse Tracking Systems to Enable Local Collaborative Mixed Reality Applications. In: Chen, J.Y.C., Fragomeni, G. (eds) Virtual, Augmented and Mixed Reality. Design and Interaction. HCII 2020. Lecture Notes in Computer Science(), vol 12190. Springer, Cham. https://doi.org/10.1007/978-3-030-49695-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-49695-1_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-49694-4

  • Online ISBN: 978-3-030-49695-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics