Skip to main content

Contrast and Parameter Research of Augmented Reality Indoor Navigation Scheme

  • Conference paper
  • First Online:
Virtual, Augmented and Mixed Reality. Design and Interaction (HCII 2020)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 12190))

Included in the following conference series:

Abstract

We are committed to using various indoor and outdoor images, 3D objects and static scenes as recognition objects to build an augmented reality world. This paper focuses on the research and application of indoor augmented reality navigation. Indoor navigation has a variety of technical solutions, such as Wi-Fi Based and indoor sensor based. As one of them, augmented reality has the advantages of no need to deploy additional hardware devices in advance, six degrees of freedom and high precision. By analyzing the development of augmented reality indoor navigation and the underlying technology, we summarize and implement three solutions: map based (MB), point-cloud based (PCB), image based (IB). We first conducted a control experiment, and compared these schemes with the flow theory and the experimental data. At the same time, we collected the feedback and suggestions during the experiment, and carried out a second experiment on some components of augmented reality navigation (such as path, point of interest), and obtained the corresponding quantitative data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abowd, G.D., Atkeson, C.G., Hong, J., Long, S., Kooper, R., Pinkerton, M.: Cyberguide: a mobile context-aware tour guide. Wireless Netw. 3, 421–433 (1997)

    Article  Google Scholar 

  2. Addlesee, M., Curwen, R., Hodges, S., et al.: Implementing a sentient computing system. Computer 34, 50–56 (2001)

    Article  Google Scholar 

  3. Chittaro, L., Nadalutti, D.: Presenting evacuation instructions on mobile devices by means of location aware 3D virtual environments. In: Proceedings of the 10th International Conference on Human Computer Interaction with Mobile Devices and Services, pp. 395–398. ACM (2008)

    Google Scholar 

  4. LaMarca, A., Chawathe, Y., Consolvo, S., et al.: Place lab: device positioning using radio beacons in the wild. In: Pervasive Computing, pp. 116–133 (2005)

    Google Scholar 

  5. Hu, Y., Liao, X., Lu, Q., Xu, S., Zhu, W.: A segment based fusion algorithm of WiFi fingerprinting and pedestrian dead reckoning. In: 2016 IEEE/CIC International Conference on Communications in China (ICCC), pp. 1–6. IEEE (2016)

    Google Scholar 

  6. Huang, B., Qi, G., Yang, X., Zhao, L., Zou, H.: Exploiting cyclic features of walking for pedestrian dead reckoning with unconstrained smartphones, pp. 374–385 (2016). https://doi.org/10.1145/2971648.2971742

  7. Gerstweiler, G., Vonach, E., Kaufmann, H.: Hymotrack: a mobile AR navigation system for complex indoor environments. Sensors 16(1), 17 (2015)

    Article  Google Scholar 

  8. Gherghina, A., Olteanu, A.-C., Tapus, N.: A marker-based augmented reality system for mobile devices. In: 2013 11th Roedunet International Conference (RoEduNet), pp. 1–6. IEEE (2013)

    Google Scholar 

  9. Müller, H., Schöning, J., Krüger, A.: Mobile map interaction - evaluation in an indoor scenario. In: Workshop on Mobile and Embedded Interactive Systems, Informatik 2006 Gesellschaft für Informatike.V. (2006)

    Google Scholar 

  10. Reitmayr, G., Schmalstieg, D.: Location based applications for mobile augmented reality. In: Proceedings of the 4th Australian User Interface Conference on User Interfaces 2003, pp. 65–73. Australian Computer Society, Inc. (2003)

    Google Scholar 

  11. Höllerer, T., Hallaway, D., Tinna, N., Feiner, S.: steps toward accommodating variable position tracking accuracy in a mobile augmented reality system. In: Proceedings of AIMS 2001: Second International Workshop on Artificial Intelligence in Mobile Systems, pp. 31–37 (2001)

    Google Scholar 

  12. Wagner, D., Schmalstieg, D.: First steps towards handheld augmented reality. In: Proceedings of Seventh IEEE International Symposium on Wearable Computers 2003, pp. 127–135 (2003)

    Google Scholar 

  13. Mulloni, A., Seichter, H., Schmalstieg, D.: Handheld augmented reality indoor navigation with activity-based instructions. In: Proceedings MobileHCI 2011 (2011)

    Google Scholar 

  14. Kasprzak, S., Komninos, A., Barrie, P.: Feature-based indoor navigation using augmented reality. In: Proceedings - 9th International Conference on Intelligent Environments, IE 2013, pp. 100–107 (2013). https://doi.org/10.1109/ie.2013.51

  15. Huang, J.-Y., Lee, S.-H., Tsai, C.-H.: A fast image matching technique for the panoramic-based localization. In: 2016 IEEE/ACIS 15th International Conference on Computer and Information Science (ICIS), pp. 1–6. IEEE (2016)

    Google Scholar 

  16. Dong, J., Xiao, Y., Noreikis, M., Ou, Z., Ylä-Jääski, A.: iMoon: using smartphones for image-based indoor navigation (2015). https://doi.org/10.1145/2809695.2809722

  17. Noreikis, M., Xiao, Y., Ylä-Jääski, A.: SeeNav: seamless and energy-efficient indoor navigation using augmented reality, pp. 186–193 (2017). https://doi.org/10.1145/3126686.3126733

  18. Gerstweiler, G., Vonach, E., Kaufmann, H.: HyMoTrack: a mobile AR navigation system for complex indoor environments. Sensors 16, 17 (2015). https://doi.org/10.3390/s16010017

    Article  Google Scholar 

  19. Rustagi, T., Yoo, K.: Indoor AR navigation using tilesets, pp. 1–2 (2018). https://doi.org/10.1145/3281505.3281575

  20. Becker, T., Nagel, C., Kolbe, T.H.: A multilayered space-event model for navigation in indoor spaces. In: Lee, J., Zlatanova, S. (eds.) 3D Geo-Information Sciences, pp. 61–77. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-540-87395-2_5

    Chapter  Google Scholar 

  21. Goetz, M., Zipf, A.: Formal definition of a user-adaptive and length-optimal routing graph for complex indoor environments. Geo-Spatial Inf. Sci. 14(2), 119–128 (2011)

    Article  Google Scholar 

  22. Krūminaitė, M., Zlatanova, S.: Indoor space subdivision for indoor navigation. In: GIS: Proceedings of the ACM International Symposium on Advances in Geographic Information Systems (2014). https://doi.org/10.1145/2676528.2676529

  23. Csikszentmihalyi, M.: Flow: the psychology of optimal experience. Des. Issues 8(1), 80–81 (1991)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lixing Tang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hou, Wj., Tang, L. (2020). Contrast and Parameter Research of Augmented Reality Indoor Navigation Scheme. In: Chen, J.Y.C., Fragomeni, G. (eds) Virtual, Augmented and Mixed Reality. Design and Interaction. HCII 2020. Lecture Notes in Computer Science(), vol 12190. Springer, Cham. https://doi.org/10.1007/978-3-030-49695-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-49695-1_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-49694-4

  • Online ISBN: 978-3-030-49695-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics