Skip to main content

A Comparison of Augmented and Virtual Reality Features in Industrial Trainings

  • Conference paper
  • First Online:
Virtual, Augmented and Mixed Reality. Industrial and Everyday Life Applications (HCII 2020)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 12191))

Included in the following conference series:

Abstract

Short-term qualification for temporary workers is a constant challenge for manufacturing companies. Cycle times of machines often have to be reduced for training processes, which demands time and financial resources. This increases the need for near-the-job trainings without manipulating cycle times of the machine. Digital visualization tools using Mixed Reality (MR) promise opportunities for application-oriented practical training. However, especially for industrial applications, where procedural knowledge has to be transferred, it is not clear which MR technology should be used for which purpose. In order to answer this question, this paper examines the underlying MR-features of the technology. In an experimental setting, the same virtual training for the assembly of a pneumatic cylinder is examined with an augmented reality/augmented virtuality (AR/AV) based application in comparison to a virtual reality (VR) based application. Based on the carried out study, there are significant differences in the evaluation of the system usability, but no differences in the evaluation of the ergonomics and the perceived task load during the task. Out of 16 test persons, 14 would choose the VR system in the final analysis. The results are discussed in the paper and recommendations for the design of MR based systems in an industrial context are given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Benešová, A., Hirman, M., Steiner, F., Tupa, J.: Analysis of education requirements for electronics manufacturing within concept industry 4.0. In: 2018 41st International Spring Seminar on Electronics Technology (ISSE), pp. 1–5. IEEE, Piscataway (2018)

    Google Scholar 

  2. Chang, M.M.L., Ong, S.K., Nee, A.Y.C.: Approaches and challenges in product disassembly planning for sustainability. Procedia CIRP 60, 506–511 (2017)

    Article  Google Scholar 

  3. Kerin, M., Pham, D.T.: A review of emerging industry 4.0 technologies in remanufacturing. J. Cleaner Prod. 237, 117805 (2019)

    Article  Google Scholar 

  4. Konings, J., Vanormelingen, S.: The impact of training on productivity and wages: firm-level evidence. Rev. Econ. Stat. 97(2), 485–497 (2015)

    Article  Google Scholar 

  5. Kim, M., Park, K.-B., Choi, S.H., Lee, J.Y., Kim, D.Y.: AR/VR-based live manual for user-centric smart factory services. In: Moon, I., Lee, Gyu M., Park, J., Kiritsis, D., von Cieminski, G. (eds.) APMS 2018. IAICT, vol. 536, pp. 417–421. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99707-0_52

    Chapter  Google Scholar 

  6. Velosa, J.D., Cobo, L., Castillo, F., Castillo, C.: Methodological proposal for use of virtual reality VR and augmented reality AR in the formation of professional skills in industrial maintenance and industrial safety. In: Auer, M.E., Zutin, D.G. (eds.) Online Engineering & Internet of Things. LNNS, vol. 22, pp. 987–1000. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-64352-6_92

    Chapter  Google Scholar 

  7. Werrlich, S., Daniel, A., Ginger, A., Nguyen, P.A., Notni, G.: Comparing HMD-based and paper-based training. In: 2018 IEEE International Symposium on Mixed and Augmented Reality (ISMAR), pp. 134–142. IEEE (2018)

    Google Scholar 

  8. Andaluz, V.H., et al.: Multi-user industrial training and education environment. In: De Paolis, L.T., Bourdot, P. (eds.) AVR 2018. LNCS, vol. 10851, pp. 533–546. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-95282-6_38

    Chapter  Google Scholar 

  9. Ghandi, S., Masehian, E.: Review and taxonomies of assembly and disassembly path planning problems and approaches. Comput. Aided Des. 67–68, 58–86 (2015)

    Article  Google Scholar 

  10. Choi, S., Jung, K., Noh, S.D.: Virtual reality applications in manufacturing industries: past research, present findings, and future directions. Concurr. Eng. 23(1), 40–63 (2015)

    Article  Google Scholar 

  11. Daling, L., Abdelrazeq, A., Sauerborn, C., Hees, F.: A comparative study of augmented reality assistant tools in assembly. In: Ahram, T., Falcão, C. (eds.) AHFE 2019. AISC, vol. 972, pp. 755–767. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-19135-1_74

    Chapter  Google Scholar 

  12. Dede, C.J., Jacobson, J., Richards, J.: Introduction: virtual, augmented, and mixed realities in education. In: Liu, D., Dede, C., Huang, R., et al. (eds.) Virtual, Augmented, and Mixed Realities in Education, pp. 1–19. Springer, Singapore (2017). https://doi.org/10.1007/978-981-10-5490-7_1

    Chapter  Google Scholar 

  13. Müller, B.C., et al.: Motion tracking applied in assembly for worker training in different locations. Procedia CIRP 48, 460–465 (2016)

    Article  Google Scholar 

  14. Guo, Q.: Learning in a mixed reality system in the context of Industrie 40. J. Tech. Educ. 3(2), 92–115 (2015)

    Google Scholar 

  15. Milgram, P., Colquhoun, H.: A taxonomy of real and virtual world display integration. In: Ohta, Y., Tamura, H. (eds.) Mixed reality: Merging real and virtual worlds, pp. 5–30. Springer, Berlin (1999). https://doi.org/10.1007/978-3-319-08234-9_205-1

    Chapter  Google Scholar 

  16. Azuma, R., Baillot, Y., Behringer, R., Feiner, S., Julier, S., MacIntyre, B.: Recent advances in augmented reality. IEEE Comput. Graph. Appl. 21(6), 34–47 (2001)

    Article  Google Scholar 

  17. Chicaiza, E.A., De la Cruz, E.I., Andaluz, V.H.: Augmented reality system for training and assistance in the management of industrial equipment and instruments. In: Bebis, G., et al. (eds.) ISVC 2018. LNCS, vol. 11241, pp. 675–686. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03801-4_59

    Chapter  Google Scholar 

  18. Regenbrecht, H., et al.: An augmented virtuality approach to 3D videoconferencing. In: Proceedings of the 2nd IEEE/ACM International Symposium on Mixed and Augmented Reality, ISMAR 2003, pp. 290–291. IEEE, Washington (2003)

    Google Scholar 

  19. Ternier, S., Klemke, R., Kalz, M., Van Ulzen, P., Specht, M.: AR learn: augmented reality meets augmented virtuality. J. Univers. Comput. Sci. Technol. Learn. Phys. Virt. Spaces 18(15), 2143–2164 (2012)

    Google Scholar 

  20. Normand, J.M., Servières, M., Moreau, G.: A new typology of augmented reality applications. In: Proceedings of the 3rd Augmented Human International Conference, AH 2012, pp. 1–8. ACM, New York (2012)

    Google Scholar 

  21. Paiva Guimarães, M., Dias, D.R.C., Mota, J.H., Gnecco, B.B., Durelli, V.H.S., Trevelin, L.C.: Immersive and interactive virtual reality applications based on 3D web browsers. Multimedia Tools Appl. 77(1), 347–361 (2018)

    Google Scholar 

  22. Porras, A.P., Solis, C.R., Andaluz, V.H., Sánchez, J.S., Naranjo, C.A.: Virtual training system for an industrial pasteurization process. In: De Paolis, L.T., Bourdot, P. (eds.) AVR 2019. LNCS, vol. 11614, pp. 430–441. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-25999-0_35

    Chapter  Google Scholar 

  23. Milgram, P., Kishino, F.: A taxonomy of mixed reality visual displays. IEICE Trans. Inf. Syst. E77-D(12), 1321–1329 (1994)

    Google Scholar 

  24. Lindemann, R.W., Noma, H.: A classification scheme for multi-sensory augmented reality. In: Proceedings of the 2007 ACM Symposium on Virtual Reality Software and Technology, pp. 175–178. ACM, New York (2007)

    Google Scholar 

  25. Tönnies, M., Plecher, D.A.: Presentation Principles in Augmented Reality - Classification and Categorization Guidelines Version 1.0. Technical Report (TUM-I1111). Technische Universität München (2011)

    Google Scholar 

  26. Mackay, W.E.: Augmented reality: linking real and virtual worlds - a new paradigm for interacting with computers. In: Proceedings of AVI 1998, ACM Conference on Advanced Visual Interfaces AVI, pp. 13–21. ACM, New York (2000)

    Google Scholar 

  27. Ortiz, J.S., et al.: Teaching-Learning process through VR applied to automotive engineering. In: Proceedings of the 2017 9th International Conference on Education Technology and Computers, ICETC 2017, pp. 36–40. ACM, New York (2017)

    Google Scholar 

  28. Radkowski, R., Herrema, J., Oliver, J.: Augmented reality-based manual assembly support with visual features for different degrees of difficulty. Int. J. Hum.-Comput. Inter. 31(5), 337–349 (2015)

    Article  Google Scholar 

  29. Karrer, K., Glaser, C., Clemens, C., Bruder, C.: Technikaffinität erfassen–der Fragebogen TA-EG. In: Lichtenstein, A., Stößel, C., Clemens, C. (eds.) Der Mensch im Mittelpunkt technischer Systeme. 8. Berliner Werkstatt Mensch-Maschine-Systeme, ZMMS Spektrum, vol. 22, no. 29, pp. 196–201. VDI, Düsseldorf (2009)

    Google Scholar 

  30. Nielsen, J.: Enhancing the explanatory power of usability heuristics. In: Adelson, B., Dumais, S., Olson, J. (eds.) Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI 1994, pp. 152–158. ACM, New York (1994)

    Google Scholar 

  31. Beier, G.: Kontrollüberzeugungen im Umgang mit Technik. Rep. Psychol. 24(9), 684–693 (1999)

    Google Scholar 

  32. Brooke, J.: SUS-A quick and dirty usability scale. In: Jordan, P.W., Thomas, B., Weerdmeester, B.A., McLelland, I.L. (eds.) Usability evaluation in industry, pp. 189–194. Taylor and Francis, London (1996)

    Google Scholar 

  33. Hart, S.G.: NASA-task load index (NASA-TLX): 20 Years Later. In: Proceedings of the Human Factors and Ergonomics Society 50th Annual Meeting, pp. 904–908. HFES, Santa Monica (2006)

    Google Scholar 

Download references

Acknowledgement

This work is part of the project ‘“ELLI 2 - Excellent Teaching and Learning in Engineering Sciences” and was funded by the Federal Ministry of Educatio and Research (BMBF), Germany.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lea M. Daling .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Daling, L.M., Abdelrazeq, A., Isenhardt, I. (2020). A Comparison of Augmented and Virtual Reality Features in Industrial Trainings. In: Chen, J.Y.C., Fragomeni, G. (eds) Virtual, Augmented and Mixed Reality. Industrial and Everyday Life Applications. HCII 2020. Lecture Notes in Computer Science(), vol 12191. Springer, Cham. https://doi.org/10.1007/978-3-030-49698-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-49698-2_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-49697-5

  • Online ISBN: 978-3-030-49698-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics