Skip to main content

Applications of Real-Time Data to Reduce Air Emissions in Maritime Ports

  • Conference paper
  • First Online:
Design, User Experience, and Usability. Case Studies in Public and Personal Interactive Systems (HCII 2020)

Abstract

Emission production in maritime ports has received a lot attention in the last few years. Under the current social and political trend, ports are likely to receive even more pressure in their endeavor to reduce emissions. Monitoring and reporting of emissions enable port authorities to formulate and track the progress of effective emission-reduction measures. As a means, emission inventories are created annually. In this paper, we explore how real-time data can be used to reduce emissions in the port. Applications utilize real-time data for improving the operational efficiency on the landside and seaside while reducing energy consumption and emissions. Hereby, we concentrate on the area of planning and optimization as one area of environmental sustainability in maritime ports. We present applications that deal with inter-terminal truck routing, berth allocation planning, and assistant systems for economic driving. These applications depend on optimization models, machine learning (ML), and gamification. Our research indicates the need for cooperation between the various port stakeholders to share the relevant data as well as proper visualization techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For instance, the 2018 Los Angeles port EI was released in September 2019.

References

  1. Current data - San Pedro bay ports clean air action plan. https://monitoring.cleanairactionplan.org/current-data/. Accessed 24 Jan 2020

  2. dashPORT. https://www.offis.de/en/offis/project/dashport.html. Accessed 15 Jan 2020

  3. Environmental report 2018: Ports of Bremen/Bremerhaven. https://bremenports.de/greenports/wp-content/uploads/sites/3/2017/04/PERS-Rezertifizierung_Report_2018_en.pdf. Accessed 15 Jan 2020

  4. News 4.19. https://www.cml.fraunhofer.de/content/dam/cml/de/documents/Newsletter/Newsletter. Accessed 15 Jan 2020

  5. Emissions estimation methodology for ocean-going vessels (2008). https://ww3.arb.ca.gov/regact/2008/fuelogv08/appdfuel.pdf. Accessed 23 Jan 2020

  6. Current methodologies in preparing mobile source port-related emission inventories: final report (2009). https://www.epa.gov/sites/production/files/2016-06/documents/2009-port-inventory-guidance.pdf. Accessed 12 Jan 2020

  7. The port of Los Angeles community-based air toxics exposure study (2009). https://monitoring.cleanairactionplan.org/wp-content/uploads/2019/07/POLA_PAH_Final_Report_092309.pdf. Accessed 24 Jan 2020

  8. Air quality monitoring program at the port of Los Angeles: year thirteen data summary May 2017–April 2018 (2018). https://monitoring.cleanairactionplan.org/wp-content/uploads/2019/07/POLA-13th-Annual-Monitoring-Report-May-2017-April-2018.pdf. Accessed 23 Jan 2020

  9. Air quality monitoring program at the port of Long Beach: annual summary report calendar year 2018 (2019). https://monitoring.cleanairactionplan.org/wp-content/uploads/2019/07/POLB-Summary-Annual-Report-for-2018-PDF.pdf. Accessed 23 Jan 2020

  10. Inventory of air emissions for calendar year 2018 [port of Los Angeles] (2019). https://kentico.portoflosangeles.org/getmedia/0e10199c-173e-4c70-9d1d-c87b9f3738b1/2018_Air_Emissions_Inventory. Accessed 18 Oct 2019

  11. Port of Long Beach - 2018 air emissions inventory (2019). http://www.polb.com/civica/filebank/blobdload.asp?BlobID=15271. Accessed 10 Oct 2019

  12. San Pedro Bay ports emissions inventory methodology report - Version 1 (2019). http://www.polb.com/civica/filebank/blobdload.asp?BlobID=15032. Accessed 26 Aug 2019

  13. Acciaro, M., et al.: Environmental sustainability in seaports: a framework for successful innovation. Marit. Policy Manag. 41(5), 480–500 (2014). https://doi.org/10.1080/03088839.2014.932926

    Article  Google Scholar 

  14. Boser, B.E., Guyon, I.M., Vapnik, V.N.: A training algorithm for optimal margin classifiers. In: Proceedings of the 5th Annual Workshop on Computational Learning Theory - COLT 1992, pp. 144–152. ACM Press (1992). https://doi.org/10.1145%2F130385.130401

  15. Brandner, H., Lessmann, S., Voß, S.: A memetic approach to construct transductive discrete support vector machines. Eur. J. Oper. Res. 230(3), 581–595 (2013). https://doi.org/10.1016/j.ejor.2013.05.010

    Article  Google Scholar 

  16. Browning, L., Bailey, K.: Current methodologies and best practices for preparing port emission inventories. https://www3.epa.gov/ttnchie1/conference/ei15/session1/browning.pdf. Accessed 30 Dec 2019

  17. Budipriyanto, A., Wirjodirdjo, B., Pujawan, N., Gurning, S.: Berth allocation problem under uncertainty: a conceptual model using collaborative approach. Procedia Manuf. 4, 429–437 (2015). https://doi.org/10.1016/j.promfg.2015.11.059

    Article  Google Scholar 

  18. Daun, T.J., Braun, D.G., Frank, C., Haug, S., Lienkamp, M.: Evaluation of driving behavior and the efficacy of a predictive eco-driving assistance system for heavy commercial vehicles in a driving simulator experiment. In: 16th International IEEE Conference on Intelligent Transportation Systems (ITSC 2013), pp. 2379–2386. IEEE (2013). https://doi.org/10.1109/ITSC.2013.6728583

  19. Daun, T.J., Lienkamp, M.: Spielend Fahren: Gamification-Konzept für Fahrerassistenzsysteme (2012). https://nbn-resolving.org/urn/resolver.pl?urn:nbn:de:bvb:91-epub-20120000-1129558-0-3

  20. Dorrer, C.: Effizienzbestimmung von Fahrweisen und Fahrerassistenz zur Reduzierung des Kraftstoffverbrauchs unter Nutzung telematischer Informationen: Stuttgart, Univ., Diss., 2003, Schriftenreihe des Instituts für Verbrennungsmotoren und Kraftfahrwesen der Universität Stuttgart, vol. 24. Expert-Verl., Renningen (2004)

    Google Scholar 

  21. Eglese, R., Bektas, T.: Green vehicle routing. In: Toth, P., Vigo, D. (eds.) Vehicle Routing: Problems, Methods, and Applications, 2nd edn., pp. 437–459. SIAM, Philadelphia (2014)

    Google Scholar 

  22. Gatta, V., Marcucci, E., Sorice, F., Tretola, G.: A gamification approach to promote positive behaviours in urban logistics (2015). https://www.researchgate.net/publication/282609851_A_Gamification_approach_to_promote_positive_behaviours_in_Urban_Logistics. Accessed 5 Jan 2020

  23. Guyon, I., Nikravesh, M., Gunn, S., Zadeh, L.A. (eds.): Feature Extraction. Springer, Heidelberg (2006). https://doi.org/10.1007/978-3-540-35488-8

    Book  Google Scholar 

  24. Heilig, L., Lalla-Ruiz, E., Voß, S.: Multi-objective inter-terminal truck routing. Transp. Res. Part E Logist. Transp. Rev. 106, 178–202 (2017)

    Article  Google Scholar 

  25. Heilig, L., Stahlbock, R., Voß, S.: From digitalization to data-driven decision making in container terminals. arXiv preprint arXiv:1904.13251

  26. Heilig, L., Voß, S.: Inter-terminal transportation: an annotated bibliography and research agenda. Flex. Serv. Manuf. J. 29(1), 35–63 (2016). https://doi.org/10.1007/s10696-016-9237-7

    Article  Google Scholar 

  27. Lalla-Ruiz, E., Heilig, L., Voß, S.: Environmental sustainability in ports. In: Sustainable Transportation and Smart Logistics, pp. 65–89. Elsevier (2019). https://doi.org/10.1016/B978-0-12-814242-4.00003-X

  28. Lam, J.S.L., Van de Voorde, E.: Green port strategy for sustainable growth and development. In: Proceedings of the International Forum on Shipping, Ports and Airports (IFSPA), pp. 27–30 (2012)

    Google Scholar 

  29. Lessmann, S., Voß, S.: Feature selection in marketing applications. In: Huang, R., Yang, Q., Pei, J., Gama, J., Meng, X., Li, X. (eds.) ADMA 2009. LNCS (LNAI), vol. 5678, pp. 200–208. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03348-3_21

    Chapter  Google Scholar 

  30. Mollick, E.R., Rothbard, N.: Mandatory fun: gamification and the impact of games at work. SSRN Electron. J. (2013). https://doi.org/10.2139/ssrn.2277103

  31. O’Reilly, C.A., Cromarty, A.S.: Fast is not real-time: Designing effective real-time AI systems. In: Gilmore, J.F. (ed.) Applications of Artificial Intelligence II. SPIE Proceedings, pp. 249–257. SPIE (1985). https://doi.org/10.1117/12.948443

  32. Parolas, I.: ETA predictions for container ships at the port of Rotterdam using machine learning techniques (2016). https://repository.tudelft.nl/islandora/object/uuid%3A9e95d11f-35ba-4a12-8b34-d137c0a4261d

  33. Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    MathSciNet  MATH  Google Scholar 

  34. Rommerskirchen, C.: Verbrauchsreduzierung durch Fahrerassistenz unter dem Einfluss von Langzeitnutzung und Situationskomplexität. Dissertation, Technische Universität München, München (2018)

    Google Scholar 

  35. Umang, N., Bierlaire, M., Erera, A.L.: Real-time management of berth allocation with stochastic arrival and handling times. J. Sched. 20(1), 67–83 (2016). https://doi.org/10.1007/s10951-016-0480-2

    Article  MathSciNet  MATH  Google Scholar 

  36. van Mierlo, J., Maggetto, G., van de Burgwal, E., Gense, R.: Driving style and traffic measures-influence on vehicle emissions and fuel consumption. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 218(1), 43–50 (2004). https://doi.org/10.1243/095440704322829155

    Article  Google Scholar 

  37. Werbach, K.: (Re)defining gamification: a process approach. In: Spagnolli, A., Chittaro, L., Gamberini, L. (eds.) PERSUASIVE 2014. LNCS, vol. 8462, pp. 266–272. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-07127-5_23

    Chapter  Google Scholar 

  38. Yu, J., Tang, G., Song, X., Yu, X., Qi, Y., Li, D., Zhang, Y.: Ship arrival prediction and its value on daily container terminal operation. Ocean Eng. 157, 73–86 (2018). https://doi.org/10.1016/j.oceaneng.2018.03.038

    Article  Google Scholar 

  39. Zhen, L., Chang, D.F.: A bi-objective model for robust berth allocation scheduling. Comput. Ind. Eng. 63(1), 262–273 (2012). https://doi.org/10.1016/j.cie.2012.03.003

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philip Cammin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cammin, P., Sarhani, M., Heilig, L., Voß, S. (2020). Applications of Real-Time Data to Reduce Air Emissions in Maritime Ports. In: Marcus, A., Rosenzweig, E. (eds) Design, User Experience, and Usability. Case Studies in Public and Personal Interactive Systems. HCII 2020. Lecture Notes in Computer Science(), vol 12202. Springer, Cham. https://doi.org/10.1007/978-3-030-49757-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-49757-6_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-49756-9

  • Online ISBN: 978-3-030-49757-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics