Skip to main content

Abstract

Translation is a key process in the cell that encompasses the formation of proteins. However, how the translation mechanisms are affected by physiological changes is yet to be determined. Saccharomyces cerevisiae is one of the most used microorganisms to express recombinant proteins, showing great industrial/commercial value. Modelling the translation process in this yeast can thus bring forward novel insights into its mechanisms and how they are affected by changes in the environment. The present work introduces an agent-based model describing the elongation step of the translation process in the yeast. The simulated and theoretical elongation times were almost identical, with a standard deviation of 0.0018%, demonstrating the usefulness of the model to simulate this type of scenarios. Results also show a negative correlation between tRNA levels and estimated decoding times of codons, in accordance with biological knowledge. The model holds considerable potential to help unveil new ways of manipulation and thus increase the production of economically relevant yeast-derived products, namely biopharmaceuticals. Further development will address more complex scenarios, such as ribosome queuing or all the phases in the translation process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Brodland, G.W.: How computational models can help unlock biological systems (2015). https://doi.org/10.1016/j.semcdb.2015.07.001

    Article  Google Scholar 

  2. Castiglione, F.: Agent based modeling and simulation, introduction to. In: Meyers, R. (ed.) Encyclopedia of Complexity and Systems Science. Springer, New York (2009). https://doi.org/10.1007/978-0-387-30440-3_13

    Chapter  Google Scholar 

  3. Foffi, G., Pastore, A., Piazza, F., Temussi, P.A.: Macromolecular crowding: chemistry and physics meet biology. Phys. Biol. 10, 40301 (2013). https://doi.org/10.1088/1478-3975/10/4/040301. (Ascona, Switzerland, 10–14 June 2012)

    Article  Google Scholar 

  4. García, A.P., Rodríguez-Patón, A.: A preliminary assessment of three strategies for the agent-based modeling of bacterial conjugation. In: Overbeek, R., Rocha, M.P., Fdez-Riverola, F., De Paz, J.F. (eds.) 9th International Conference on Practical Applications of Computational Biology and Bioinformatics. AISC, vol. 375, pp. 1–9. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-19776-0_1

    Chapter  Google Scholar 

  5. Pérez-Rodríguez, G., Gameiro, D., Pérez-Pérez, M., Lourenço, A., Azevedo, N.F.: Single molecule simulation of diffusion and enzyme kinetics. J. Phys. Chem. B. 120, 3809–3820 (2016). https://doi.org/10.1021/acs.jpcb.5b12544

    Article  Google Scholar 

  6. Pérez-Rodríguez, G., Dias, S., Pérez-Pérez, M., Fdez-Riverola, F., Azevedo, N.F., Lourenço, A.: Agent-based model of diffusion of N-acyl homoserine lactones in a multicellular environment of Pseudomonas aeruginosa and Candida albicans. Biofouling 34, 335–345 (2018). https://doi.org/10.1080/08927014.2018.1440392

    Article  Google Scholar 

  7. Arduin, H., Opatowski, L.: SimFI: a transmission agent-based model of two interacting pathogens. In: Demazeau, Y., An, B., Bajo, J., Fernández-Caballero, A. (eds.) PAAMS 2018. LNCS (LNAI), vol. 10978, pp. 72–83. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-94580-4_6

    Chapter  Google Scholar 

  8. Maia, P., Pérez-Rodríguez, G., Pérez-Pérez, M., Fdez-Riverola, F., Lourenço, A., Azevedo, N.F.: Application of agent-based modelling to assess single-molecule transport across the cell envelope of E. coli. Comput. Biol. Med. (2019). https://doi.org/10.1016/J.COMPBIOMED.2019.02.020

  9. Porro, D., Sauer, M., Branduardi, P., Mattanovich, D.: Recombinant protein production in yeasts (2005). https://doi.org/10.1385/MB:31:3:245

    Article  Google Scholar 

  10. Magalhães, T.B., Lourenço, A., Azevedo, N.F.: Computational resources and strategies to assess single-molecule dynamics of the translation process in S. cerevisiae. Brief. Bioinform. (2019). https://doi.org/10.1093/bib/bbz149

  11. Kapp, L.D., Lorsch, J.R.: GTP-dependent recognition of the methionine moiety on initiator tRNA by translation factor eIF2. J. Mol. Biol. 335, 923–936 (2004). https://doi.org/10.1016/j.jmb.2003.11.025

    Article  Google Scholar 

  12. Diament, A., Feldman, A., Schochet, E., Kupiec, M., Arava, Y., Tuller, T.: The extent of ribosome queuing in budding yeast. PLoS Comput. Biol. 14, e1005951 (2018). https://doi.org/10.1371/journal.pcbi.1005951

    Article  Google Scholar 

  13. Grimm, V., Berger, U., DeAngelis, D.L., Polhill, J.G., Giske, J., Railsback, S.F.: The ODD protocol: a review and first update. Ecol. Modell. 221, 2760–2768 (2010). https://doi.org/10.1016/j.ecolmodel.2010.08.019

    Article  Google Scholar 

  14. Grimm, V., et al.: A standard protocol for describing individual-based and agent-based models. Ecol. Modell. 198, 115–126 (2006). https://doi.org/10.1016/j.ecolmodel.2006.04.023

    Article  Google Scholar 

  15. Luke, S., Cioffi-Revilla, C., Panait, L., Sullivan, K., Balan, G.: MASON: a multiagent simulation environment. Simul. Trans. Soc. Model. Simul. Int. 82, 517–527 (2005). https://doi.org/10.1177/0037549705058073

    Article  Google Scholar 

  16. PMP1 - Plasma membrane ATPase proteolipid 1 precursor - Saccharomyces cerevisiae (strain ATCC 204508/S288c) (Baker’s yeast) - PMP1 gene & protein. https://www.uniprot.org/uniprot/P32903. Accessed 09 Jan 2020

  17. PMP1 Protein|SGD. https://www.yeastgenome.org/locus/S000000619/protein. Accessed 15 Jan 2020

  18. Palmgren, M., Morsomme, P.: The plasma membrane H+ -ATPase, a simple polypeptide with a long history. Yeast 36, 201–210 (2019). https://doi.org/10.1002/yea.3365

    Article  Google Scholar 

  19. Yamaguchi, M., Namiki, Y., et al.: Structome of Saccharomyces cerevisiae determined by freeze-substitution and serial ultrathin-sectioning electron microscopy. J. Electron. Microsc. (Tokyo) 60, 321–335 (2011). https://doi.org/10.1093/jmicro/dfr052

    Article  Google Scholar 

  20. Millington, I.: Game Physics Engine Development: How to Build a Robust Commercial-Grade Physics Engine for your Game. CRC Press, Boca Raton (2010)

    Book  Google Scholar 

  21. Palmer, G.: Physics for Game Programmers. Apress (2005). https://doi.org/10.1007/978-1-59059-472-8

  22. Cecconi, F., Cencini, M., Falcioni, M., Vulpiani, A.: Brownian motion and diffusion: from stochastic processes to chaos and beyond. Chaos. 15 (2005). https://doi.org/10.1063/1.1832773

  23. Siwiak, M., Zielenkiewicz, P.: A comprehensive, quantitative, and genome-wide model of translation. PLoS Comput. Biol. 6, e1000865 (2010). https://doi.org/10.1371/journal.pcbi.1000865

    Article  Google Scholar 

  24. Dana, A., Tuller, T.: The effect of tRNA levels on decoding times of mRNA codons. Nucleic Acids Res. (2014). https://doi.org/10.1093/nar/gku646

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the Portuguese Foundation for Science and Technology (FCT) under the scope of the strategic funding of UIDB/04469/2020 unit, BioTecNorte operation (NORTE-01-0145-FEDER-000004) funded by the European Regional Development Fund under the scope of Norte2020 - Programa Operacional Regional do Norte, and of the PhD Grant SFRH/BD/143491/2019. Additionally, it received funding through Base Funding - UIDB/00511/2020 of the Laboratory for Process Engineering, Environment, Biotechnology and Energy – LEPABE - funded by national funds through the FCT/MCTES (PIDDAC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anália Lourenço .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pérez-Rodríguez, G., Magalhães, B.T., Azevedo, N.F., Lourenço, A. (2020). Application of Agent-Based Modelling to Simulate Ribosome Translation. In: Demazeau, Y., Holvoet, T., Corchado, J., Costantini, S. (eds) Advances in Practical Applications of Agents, Multi-Agent Systems, and Trustworthiness. The PAAMS Collection. PAAMS 2020. Lecture Notes in Computer Science(), vol 12092. Springer, Cham. https://doi.org/10.1007/978-3-030-49778-1_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-49778-1_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-49777-4

  • Online ISBN: 978-3-030-49778-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics