Skip to main content

Abstract

We expect that the traffic will be almost optimal when the collective behaviour of autonomous vehicles will determine the traffic. The route selection plays an important role in optimizing the traffic. There are different models of the routing problem. The novel intention-aware online routing game model points out that intention-awareness helps to avoid that the traffic generated by autonomous vehicles be worse than the traffic indicated by classical traffic flow models. The models are important, but their applicability in real life needs further investigations. We are building a test environment, where the decision making methods of the different models can be evaluated in almost real traffic. The almost real traffic runs in a well known simulation platform. The simulation platform also provides tools to calculate a dynamic equilibrium traffic assignment. The calculation needs long time and a lot of computing resources. The routing model evaluator contains an implementation of the routing model which determines the routes for the vehicles. The route selections are injected into the simulation platform, and the simulation platform drives the vehicles. The first results of the investigations with the routing model evaluator show that the route selection of the intention-aware routing model will be able to bring the traffic close to a dynamic equilibrium in real time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://www.lgsvlsimulator.com/.

  2. 2.

    https://sumo.dlr.de/index.html.

  3. 3.

    https://www.openstreetmap.org/.

  4. 4.

    https://sumo.dlr.de/docs/TraCI.html.

  5. 5.

    https://threejs.org/.

  6. 6.

    https://sumo.dlr.de/docs/Demand/Dynamic_User_Assignment.html.

References

  1. Beckmann, M.J., McGuire, C.B., Winsten, C.B.: Studies in the Economics of Transportation. Yale University Press (1956)

    Google Scholar 

  2. Blum, A., Even-Dar, E., Ligett, K.: Routing without regret: on convergence to Nash equilibria of regret-minimizing algorithms in routing games. In: Proceedings of the 25th ACM Symposium on Principles of Distributed Computing, PODC 2006, pp. 45–52. ACM, New York (2006). https://doi.org/10.1145/1146381.1146392

  3. Claes, R., Holvoet, T.: Traffic coordination using aggregation-based traffic predictions. IEEE Intell. Syst. 29(4), 96–100 (2014). https://doi.org/10.1109/MIS.2014.73

    Article  Google Scholar 

  4. Claes, R., Holvoet, T., Weyns, D.: A decentralized approach for anticipatory vehicle routing using delegate multi-agent systems. IEEE Trans. Intell. Transp. Syst. 12(2), 364–373 (2011). https://doi.org/10.1109/TITS.2011.2105867

    Article  Google Scholar 

  5. Cominetti, R., Correa, J., Olver, N.: Long term behavior of dynamic equilibria in fluid queuing networks. In: Eisenbrand, F., Koenemann, J. (eds.) IPCO 2017. LNCS, vol. 10328, pp. 161–172. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59250-3_14

    Chapter  Google Scholar 

  6. Dosovitskiy, A., Ros, G., Codevilla, F., Lopez, A., Koltun, V.: CARLA: an open urban driving simulator. In: Proceedings of the 1st Annual Conference on Robot Learning, pp. 1–16 (2017)

    Google Scholar 

  7. Fischer, S., Vöcking, B.: On the evolution of selfish routing. In: Albers, S., Radzik, T. (eds.) ESA 2004. LNCS, vol. 3221, pp. 323–334. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30140-0_30

    Chapter  Google Scholar 

  8. Gawron, C.: An iterative algorithm to determine the dynamic user equilibrium in a traffic simulation model. Int. J. Mod. Phys. C 09(03), 393–407 (1998). https://doi.org/10.1142/s0129183198000303

    Article  Google Scholar 

  9. Halpern, J.Y., Moses, Y.: A procedural characterization of solution concepts in games. J. Artif. Intell. Res. 49, 143–170 (2014). https://doi.org/10.1613/jair.4220

    Article  MathSciNet  MATH  Google Scholar 

  10. Hosmer Jr., D.W., Lemeshow, S., Sturdivant, R.X.: Applied Logistic Regression, 3rd edn. Wiley, Hoboken (2013)

    Book  Google Scholar 

  11. Koch, R., Skutella, M.: Nash equilibria and the price of anarchy for flows over time. Theory Comput. Syst. 49(1), 71–97 (2011). https://doi.org/10.1007/s00224-010-9299-y

    Article  MathSciNet  MATH  Google Scholar 

  12. Lopez, P.A., et al.: Microscopic traffic simulation using SUMO. In: 2018 21st International Conference on Intelligent Transportation Systems (ITSC). IEEE, November 2018. https://doi.org/10.1109/itsc.2018.8569938

  13. Merchant, D.K., Nemhauser, G.L.: A model and an algorithm for the dynamic traffic assignment problems. Transp. Sci. 12(3), 183–199 (1978). https://doi.org/10.1287/trsc.12.3.183

    Article  Google Scholar 

  14. Nisan, N., Roughgarden, T., Tardos, E., Vazirani, V.V.: Algorithmic Game Theory. Cambridge University Press, New York (2007). https://doi.org/10.1017/CBO9780511800481

    Book  MATH  Google Scholar 

  15. Palaiopanos, G., Panageas, I., Piliouras, G.: Multiplicative weights update with constant step-size in congestion games: convergence, limit cycles and chaos. In: Proceedings of the 31st International Conference on Neural Information Processing Systems, pp. 5874–5884. Curran Associates, USA (2017). https://doi.org/10.5555/3295222.3295337

  16. Parkes, D.C.: Online mechanisms. In: Algorithmic Game Theory, pp. 411–439. Cambridge University Press (2007). https://doi.org/10.1017/CBO9780511800481

  17. Peeta, S., Ziliaskopoulos, A.K.: Foundations of dynamic traffic assignment: the past, the present and the future. Netw. Spat. Econ. 1(3), 233–265 (2001). https://doi.org/10.1023/A:1012827724856

    Article  Google Scholar 

  18. Pourabdollah, M., Bjarkvik, E., Furer, F., Lindenberg, B., Burgdorf, K.: Calibration and evaluation of car following models using real-world driving data. In: 2017 IEEE 20th International Conference on Intelligent Transportation Systems (ITSC). IEEE, October 2017. https://doi.org/10.1109/itsc.2017.8317836

  19. Roughgarden, T.: Routing games. In: Algorithmic Game Theory, pp. 461–486. Cambridge University Press (2007). https://doi.org/10.1017/CBO9780511800481

  20. Sandholm, W.H.: Potential games with continuous player sets. J. Econ. Theory 97(1), 81–108 (2001). https://doi.org/10.1006/jeth.2000.2696

    Article  MathSciNet  MATH  Google Scholar 

  21. Schaefer, M., Čáp, M., Vokřínek, J.: AgentDrive: agent-based simulator for intelligent cars and its application for development of a lane-changing assistant. In: Alonso-Betanzos, A., et al. (eds.) Agent-Based Modeling of Sustainable Behaviors. UCS, pp. 143–165. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-46331-5_7

    Chapter  Google Scholar 

  22. Schaefer, M., Vokřínek, J., Pinotti, D., Tango, F.: Multi-agent traffic simulation for development and validation of autonomic car-to-car systems. In: McCluskey, T.L., Kotsialos, A., Müller, J.P., Klügl, F., Rana, O., Schumann, R. (eds.) Autonomic Road Transport Support Systems. AS, pp. 165–180. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-25808-9_10

    Chapter  Google Scholar 

  23. Torabi, B., Al-Zinati, M., Wenkstern, R.Z.: MATISSE 3.0: a large-scale multi-agent simulation system for intelligent transportation systems. In: Demazeau, Y., An, B., Bajo, J., Fernández-Caballero, A. (eds.) PAAMS 2018. LNCS (LNAI), vol. 10978, pp. 357–360. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-94580-4_38

    Chapter  Google Scholar 

  24. Varga, L.: On intention-propagation-based prediction in autonomously self-adapting navigation. Scalable Comput.: Pract. Exp. 16(3), 221–232 (2015). http://www.scpe.org/index.php/scpe/article/view/1098

  25. Varga, L.Z.: Two prediction methods for intention-aware online routing games. In: Belardinelli, F., Argente, E. (eds.) EUMAS/AT-2017. LNCS (LNAI), vol. 10767, pp. 431–445. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01713-2_30

    Chapter  Google Scholar 

  26. Varga, L.Z.: Dynamic global behaviour of online routing games. In: Weyns, D., Mascardi, V., Ricci, A. (eds.) EMAS 2018. LNCS (LNAI), vol. 11375, pp. 202–221. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-25693-7_11

    Chapter  Google Scholar 

  27. Wardrop, J.G.: Some theoretical aspects of road traffic research. Proc. Inst. Civil Eng. Part II 1(36), 352–378 (1952)

    Google Scholar 

  28. de Weerdt, M.M., Stein, S., Gerding, E.H., Robu, V., Jennings, N.R.: Intention-aware routing of electric vehicles. IEEE Trans. Intell. Transp. Syst. 17(5), 1472–1482 (2016). https://doi.org/10.1109/TITS.2015.2506900

    Article  Google Scholar 

  29. Weibull, J.W.: Evolutionary Game Theory. MIT Press Ltd., Cambridge (1997)

    MATH  Google Scholar 

Download references

Acknowledgement

The work of V. Antal, T.G. Farkas, A. Kiss, and M. Miskolczi was supported by the European Union, co-financed by the European Social Fund (EFOP-3.6.3-VEKOP-16-2017-00002). The work of L.Z. Varga was supported by project no. ED_18-1-2019-0030 (Application domain specific highly reliable IT solutions subprogramme), and implemented with the support provided from the National Research, Development and Innovation Fund of Hungary, financed under the Thematic Excellence Programme funding scheme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to László Z. Varga .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Antal, V., Farkas, T.G., Kiss, A., Miskolczi, M., Varga, L.Z. (2020). Routing Model Evaluator. In: Demazeau, Y., Holvoet, T., Corchado, J., Costantini, S. (eds) Advances in Practical Applications of Agents, Multi-Agent Systems, and Trustworthiness. The PAAMS Collection. PAAMS 2020. Lecture Notes in Computer Science(), vol 12092. Springer, Cham. https://doi.org/10.1007/978-3-030-49778-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-49778-1_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-49777-4

  • Online ISBN: 978-3-030-49778-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics