Skip to main content

Virtual Reality Applications Using Pseudo-attraction Force by Asymmetric Oscillation

  • Conference paper
  • First Online:
Human Interface and the Management of Information. Designing Information (HCII 2020)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 12184))

Included in the following conference series:

Abstract

Because virtual reality (VR) systems are accessible to anyone through inexpensive high-end consumer headsets and input devices, researchers are seeking a technique to enrich the VR experience using modalities other than audiovisual ones, such as touch. The author is developing a haptic display that utilizes the properties of human illusions, which makes humans experience an illusory force similar to the sensation of being pulled continuously in a particular direction through asymmetric vibrations. Using illusory force in the VR applications is not a popular concept. This paper discusses the possibility of whether such a pseudo-attraction force can be applied to VR applications and introduces several applications for the implementation of this pseudo-attraction force in real world scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Amemiya, T., Ando, H., Maeda, T.: Virtual force display: direction guidance using asymmetric acceleration via periodic translational motion. In: Proceedings of World Haptics Conference, pp. 619–622 (2005)

    Google Scholar 

  2. Amemiya, T: Haptic interface using sensory illusion. In: Tutorial in IEEE Virtual Reality 2008, Integration of Haptics in Virtual Environments: from Perception to Rendering, Reno, NV (2008)

    Google Scholar 

  3. Amemiya, T., Sugiyama, H.: Orienting kinesthetically: a haptic handheld wayfinder for people with visual impairments. ACM Trans. Access. Comput. 3(2), 1–23 (2010). Article 6

    Article  Google Scholar 

  4. Amemiya, T., Maeda, T.: Asymmetric oscillation distorts the perceived heaviness of handheld objects. IEEE Trans. Haptics 1(1), 9–18 (2008)

    Article  Google Scholar 

  5. Amemiya, T., Maeda, T.: NOBUNAGA: multicylinder-like pulse generator for kinesthetic illusion of being pulled smoothly. In: Ferre, M. (ed.) EuroHaptics 2008. LNCS, vol. 5024, pp. 580–585. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-69057-3_75

    Chapter  Google Scholar 

  6. Amemiya, T., Ando, H., Maeda, T.: Hand-held force display with spring-cam mechanism for generating asymmetric acceleration. In: Proceedings of World Haptics Conference, Tsukuba, Japan, pp. 572–573 (2007)

    Google Scholar 

  7. Amemiya, T., Gomi, H.: Distinct pseudo-attraction force sensation by a thumb-sized vibrator that oscillates asymmetrically. In: Proceedings of Eurohaptics, Versailles, France, vol. II, pp. 88–95 (2014)

    Google Scholar 

  8. Bolanowski Jr., S.J., Gescheider, G.A., Verrillo, R.T., Checkosky, C.M.: Four channels mediate the mechanical aspects of touch. J. Acoust. Soc. Am. 84(5), 680–694 (1988)

    Article  Google Scholar 

  9. Srinivasan, M.A., Whitehouse, J.M., Lamotte, R.H.: Tactile detection of slip: surface microgeometry and peripheral neural codes. J. Neurophysiol. 63(6), 323–332 (1990)

    Article  Google Scholar 

  10. Maeno, T., Kobayashi, K., Yamazaki, N.: Relationship between the structure of human finger tissue and the location of tactile receptors. Bull. JSME Int. J. 41, 94–100 (1998)

    Article  Google Scholar 

  11. Amemiya, T.: Perceptual illusions for multisensory displays. In: Proceedings of the 22nd International Display Workshops, IDW 2015, Otsu, Japan, vol. 22, pp. 1276–1279 (2015). Invited talk

    Google Scholar 

  12. Rekimoto, J.: Traxion: a tactile interaction device with virtual force sensation. In: Proceedings of ACM UIST, pp. 427–431 (2013)

    Google Scholar 

  13. Amemiya, T., Gomi, H.: Active manual movement improves directional perception of illusory force. IEEE Trans. Haptics 9(4), 465–473 (2016)

    Article  Google Scholar 

  14. Tappeiner, H.W., Klatzky, R.L., Unger, B., Hollis, R.: Good vibrations: asymmetric vibrations for directional haptic cues. In: Proceedings of World Haptics Conference, pp. 285–289 (2009)

    Google Scholar 

  15. Choi, I., Culbertson, H., Miller, M.R., Olwal, A., Follmer, S.: Grabity: a wearable haptic interface for simulating weight and grasping in virtual reality. In: Proceedings of UIST, pp. 119–130 (2017)

    Google Scholar 

  16. Hamaguchi, H., Amemiya, T., Maeda, T., Ando, H.: Design of repetitive knocking force display for being-pulled illusion. In: Proceedings of 19th International Symposium in Robot and Human Interactive Communication, Viareggio, pp. 33–37 (2010)

    Google Scholar 

  17. Hirose, M.: The second generation virtual reality technology. In: Proceedings of 16th International Conference on Virtual Systems and Multimedia, Seoul, Korea (2010). Keynote/invited Speech

    Google Scholar 

  18. Yano, H., Yoshie, M., Iwata, H.: Development of a non-grounded haptic interface using the gyro effect. In: Proceedings of HAPTICS, pp. 32–39 (2003)

    Google Scholar 

  19. Tanaka, Y., Masataka, S., Yuka, K., Fukui, Y., Yamashita, J., Nakamura, N.: Mobile torque display and haptic characteristics of human palm. In: Proceedings of ICAT, pp. 115–120 (2001)

    Google Scholar 

  20. Massie, T.H., Salisbury, J.K.: The phantom haptic interface: a device for probing virtual objects. In: Proceedings of the ASME Winter Annual Meeting, Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, vol. 55, no. 1, pp. 295–300 (1994)

    Google Scholar 

  21. Sato, M., Hirata, Y., Kawarada, H.: Space interface device for artificial reality - SPIDAR. Syst. Comput. Japan 23(12), 44–54 (2007)

    Article  Google Scholar 

  22. Gurocak, H., Jayaram, S., Parrish, B., Jayaram, U.: Weight sensation in virtual environments using a haptic device with air jets. J. Comput. Inf. Sci. Eng. 3, 130–135 (2003)

    Article  Google Scholar 

  23. Suzuki, Y., Kobayashi, M., Ishibashi, S.: Design of force feedback utilizing air pressure toward untethered human interface. In: Proceedings of CHI 2002 Extended Abstracts on Human Factors in Computing Systems, pp. 808–809. ACM Press (2002)

    Google Scholar 

  24. Amemiya, T.: Haptic interface technologies using perceptual illusions. In: Yamamoto, S., Mori, H. (eds.) HIMI 2018. LNCS, vol. 10904, pp. 168–174. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-92043-6_14

    Chapter  Google Scholar 

  25. Yem, V., Okazaki, R., Kajimoto, H.: Vibrotactile and pseudo force presentation using motor rotational acceleration. In: Proceedings of IEEE Haptics Symposium, HAPTICS, Philadelphia, PA, pp. 47–51 (2016)

    Google Scholar 

  26. Culbertson, H., Walker, J. M., Okamura, A.M.: Modeling and design of asymmetric vibrations to induce ungrounded pulling sensation through asymmetric skin displacement. In: Proceedings of IEEE Haptics Symposium, HAPTICS, Philadelphia, PA, pp. 27–33 (2016)

    Google Scholar 

  27. Tanabe, T., Yano, H., Iwata, I.: Evaluation of the perceptual characteristics of a force induced by asymmetric vibrations. IEEE Trans. Haptics 11(2), 220–231 (2018)

    Article  Google Scholar 

  28. Kim, H., Yi, H., Lee, H., Lee. W.: HapCube: a wearable tactile device to provide tangential and normal pseudo-force feedback on a fingertip. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems. Paper 501, pp. 1–13 (2018)

    Google Scholar 

  29. Choiniere, J.-P., Gosselin, C.: Development and experimental validation of a haptic compass based on asymmetric torque stimuli. IEEE Trans. Haptics 10(1), 29–39 (2017)

    Article  Google Scholar 

  30. Noguchi, J., et al.: Powder screen: a virtual materializer. In: Proceedings of ACM SIGGRAPH 2006 Emerging Technologies. ACM (2006)

    Google Scholar 

  31. Nakamura, N., Fukui, Y.: Development of fingertip type nongrounding force feedback display. In: Proceedings of World Haptics Conference, pp. 582–583 (2007)

    Google Scholar 

  32. Jensen, L., Konradsen, F.: A review of the use of virtual reality head-mounted displays in education and training. Educ. Inf. Technol. 23(4), 1515–1529 (2018). https://doi.org/10.1007/s10639-017-9676-0

    Article  Google Scholar 

  33. Georgiou, O., et al.: Touchless haptic feedback for VR rhythm games. In: Proceedings of IEEE Conference on Virtual Reality and 3D User Interfaces, VR, pp. 553–554 (2018)

    Google Scholar 

  34. Hebborn, A.K., Höhner, N., Müller, S.: Occlusion matting: realistic occlusion handling for augmented reality applications. In: Proceedings of IEEE International Symposium on Mixed and Augmented Reality, ISMAR, pp. 62–71 (2017)

    Google Scholar 

  35. Winfree, K., Gewirtz, J., Mather, T., Fiene, J., Kuchenbecker, K.: A high fidelity ungrounded torque feedback device: the iTorqU 2.0. In: Proceedings of IEEE World Haptics Conference, pp. 261–266 (2009)

    Google Scholar 

  36. Amemiya, T., Gomi, H.: Directional torque perception with brief, asymmetric net rotation of a flywheel. IEEE Trans. Haptics 6(3), 370–375 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by JSPS KAKENHI, Grants-in-Aid for Scientific Research (B) 18H03283.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomohiro Amemiya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Amemiya, T. (2020). Virtual Reality Applications Using Pseudo-attraction Force by Asymmetric Oscillation. In: Yamamoto, S., Mori, H. (eds) Human Interface and the Management of Information. Designing Information. HCII 2020. Lecture Notes in Computer Science(), vol 12184. Springer, Cham. https://doi.org/10.1007/978-3-030-50020-7_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-50020-7_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-50019-1

  • Online ISBN: 978-3-030-50020-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics