Skip to main content

The Power of Leibniz-Like Functions as Oracles

  • Conference paper
  • First Online:
Computer Science – Theory and Applications (CSR 2020)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12159))

Included in the following conference series:

Abstract

A Leibniz-like function \(\chi \) is an arithmetic function (i.e., \(\chi : \mathbb {N}\rightarrow \mathbb {N}\)) satisfying the product rule (which is also known as “Leibniz’s rule”): \(\chi (MN) = \chi (M) \cdot N + M \cdot \chi (N)\). In this paper we study the computational power of efficient algorithms that are given oracle access to such functions. Among the results, we show that certain families of Leibniz-like functions can be use to factor integers, while many other families can used to compute the radicals of integers and other number-theoretic functions which are believed to be as hard as integer factorization [1, 2].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For sufficiently large fields.

  2. 2.

    If \(N = \prod \limits _{i=1}^k p_i^{\alpha _i}\) then its “square-free” part (or “radical”) is defined as \(\prod \limits _{i=1}^k p_i\).

References

  1. Adleman, L.M., McCurley, K.S.: Open problems in number theoretic complexity, II. In: Adleman, L.M., Huang, M.-D. (eds.) ANTS 1994. LNCS, vol. 877, pp. 291–322. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-58691-1_70

    Chapter  MATH  Google Scholar 

  2. Bach, E.: Intractable problems in number theory. In: Goldwasser, S. (ed.) CRYPTO 1988. LNCS, vol. 403, pp. 77–93. Springer, New York (1990). https://doi.org/10.1007/0-387-34799-2_7

    Chapter  Google Scholar 

  3. Bach, E., Driscoll, J.R., Shallit, J.: Factor refinement. J. Algorithms 15(2), 199–222 (1993). https://doi.org/10.1006/jagm.1993.1038

    Article  MathSciNet  MATH  Google Scholar 

  4. Bach, E., Miller, G.L., Shallit, J.: Sums of divisors, perfect numbers and factoring. SIAM J. Comput. 15(4), 1143–1154 (1986). https://doi.org/10.1137/0215083

    Article  MathSciNet  MATH  Google Scholar 

  5. Bernstein, D.: Factoring into coprimes in essentially linear time. J. Algorithms 54(1), 1–30 (2005). https://doi.org/10.1016/j.jalgor.2004.04.009

    Article  MathSciNet  MATH  Google Scholar 

  6. Gathen, J.V.Z.: Who was who in polynomial factorization. In: Trager, B.M. (ed.) Symbolic and Algebraic Computation, International Symposium, ISSAC. p. 2. ACM (2006). https://doi.org/10.1145/1145768.1145770

  7. Kaltofen, E.: Polynomial factorization: a success story. In: Sendra, J.R. (ed.) Symbolic and Algebraic Computation, International Symposium, ISSAC. pp. 3–4. ACM (2003). https://doi.org/10.1145/860854.860857

  8. Landau, S.: Some remarks on computing the square parts of integers. Inf. Comput. 78(3), 246–253 (1988). https://doi.org/10.1016/0890-5401(88)90028-4

    Article  MathSciNet  MATH  Google Scholar 

  9. Lenstra, A.K., Lenstra, H.W., Lovász, L.: Factoring polynomials with rational coefficients. Mathematische Annalen 261(4), 515–534 (1982)

    Article  MathSciNet  Google Scholar 

  10. Miller, G.L.: Riemann’s hypothesis and tests for primality. J. Comput. Syst. Sci. 13(3), 300–317 (1976). https://doi.org/10.1016/S0022-0000(76)80043-8

    Article  MathSciNet  MATH  Google Scholar 

  11. Morain, F., Renault, G., Smith, B.: Deterministic factoring with oracles. CoRR abs/1802.08444 (2018). http://arxiv.org/abs/1802.08444

  12. Shallit, J., Shamir, A.: Number-theoretic functions which are equivalent to number of divisors. Inf. Process. Lett. 20(3), 151–153 (1985). https://doi.org/10.1016/0020-0190(85)90084-5

    Article  MathSciNet  MATH  Google Scholar 

  13. Woll, H.: Reductions among number theoretic problems. Inf. Comput. 72(3), 167–179 (1987). https://doi.org/10.1016/0890-5401(87)90030-7

    Article  MathSciNet  MATH  Google Scholar 

  14. Yun, D.Y.Y.: On square-free decomposition algorithms. In: SYMSAC 1976, Proceedings of the third ACM Symposium on Symbolic and Algebraic Manipulation, Yorktown Heights, New York, USA, 10–12 August 1976, pp. 26–35. ACM (1976). https://doi.org/10.1145/800205.806320

Download references

Acknowledgements

The authors would also like to thank the anonymous referees for their detailed comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ilya Volkovich .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kim, J., Volkovich, I., Zhang, N.X. (2020). The Power of Leibniz-Like Functions as Oracles. In: Fernau, H. (eds) Computer Science – Theory and Applications. CSR 2020. Lecture Notes in Computer Science(), vol 12159. Springer, Cham. https://doi.org/10.1007/978-3-030-50026-9_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-50026-9_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-50025-2

  • Online ISBN: 978-3-030-50026-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics