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Abstract. We present a method of generalization of the Lovász exten-
sion formula combining two known approaches - the first of them based on
the replacement of the product operator by some suitable binary function
F and the second one based on the replacement of the minimum opera-
tor by a suitable aggregation function A. We propose generalization by
simultaneous replacement of both product and minimum operators and
investigate pairs (F,A) yielding an aggregation function for all capacities.
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1 Introduction

Aggregation of several values into a single value proves to be useful in many fields,
e.g., multicriteria decision making, image processing, deep learning, fuzzy sys-
tems etc. Using the Choquet integral [3] as a mean of aggregation process allows
to capture relations between aggregated data through so-called fuzzy measures
[9]. This is the reason of the nowadays interest in generalizations of the Choquet
integral, for a recent state-of-art see, e.g., [4].

In our paper we focus on generalizations of the Choquet integral expressed
by means of the so-called Möbius transform, which is also known as Lovász
extension formula, see (2) below. Recently, two different approaches occured - in
the first one the Lovász extension formula is modified by replacing of the product
operator by some suitable binary function F and the second one is based on the
replacement of the minimum operator by a suitable aggregation function A. We
study the question, when these two approaches can be used simultaneously and
we investigate the functional Im

F,A obtained in this way.
The paper is organized as follows. In the next section, some necessary prelim-

inaries are given. In Sect. 3, we propose the new functional Im
F,A and exemplify

the instances, when the obtained functional is an aggregation function for all
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capacities and when it is not. Section 4 contains results concerning the binary
case. Finally, some concluding remarks are given.

2 Preliminaries

In this section we recall some definitions and results which will be used in the
sequel. We also fix the notation, mostly according to [5], wherein more informa-
tion concerning the theory of aggregation functions can be found.

Let n ∈ N and N = {1, · · · , n}.

Definition 1. A function A : [0, 1]n → [0, 1] is an (n-ary) aggregation function
if A is monotone and satisfies the boundary conditions A(0, . . . , 0) = 0 and
A(1, . . . , 1) = 1.

We denote the class of all n-ary aggregations functions by A(n).

Definition 2. An aggregation function A ∈ A(n) is

– conjunctive, if A(x) ≤ min
i∈N

xi for all x ∈ [0, 1]n,

– disjunctive, if A(x) ≥ max
i∈N

xi for all x ∈ [0, 1]n.

Definition 3. A set function m : 2N → [0, 1] is a capacity if m(C) ≤ m(D)
whenever C ⊆ D and m satisfies the boundary conditions m(∅) = 0, m(N) = 1.

We denote the class of all capacities on 2N by M(n).

Definition 4. The set function Mm : 2N → R, defined by

Mm(I) =
∑

K⊆I

(−1)|I\K|m(K)

for all I ⊆ N , is called Möbius transform corresponding to a capacity m.

Möbius transform is invertible by means of the so-called Zeta transform:

m(A) =
∑

B⊆A

Mm(B), (1)

for every A ⊆ N .
Denote Rn � R the range of the Möbius transform. The bounds of the

Möbius transform have recently been studied by Grabisch et al. in [6].

Definition 5. Let m : 2N → [0, 1] be a capacity and x = (x1, . . . , xn) ∈ [0, 1]n.
Then the Choquet integral of x with respect to m is given by

Chm(x) =
∫ 1

0

m({i ∈ N |xi ≥ t}) dt,

where the integral on the right-hand side is the Riemann integral.
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Proposition 1. Let m : 2N → [0, 1] and x ∈ [0, 1]n. Then the discrete Choquet
integral can be expressed as:

Chm(x) =
∑

∅�=B⊆N

(
Mm(B) · min

i∈B
xi

)
. (2)

Formula (2) is also known as the Lovász extension formula [8].
Now we recall two approaches to generalization of the formula (2). The first

one is due to Kolesárová et al. [7] and is based on replacing the minimum operator
in (2) by some other aggregation function in the following way:

Let m ∈ M(n) be a capacity, A ∈ A(n) be an aggregation function. Define
Fm,A : [0, 1]n → R by

Fm,A(x1, . . . , xn) =
∑

B⊆N

Mm(B)A(xB), (3)

where (xB)i = xi whenever i ∈ B and (xB)i = 1 otherwise. The authors focused
on characterization of aggregation functions A yielding, for all capacities m ∈
M(n), an aggregation function Fm,A extending the capacity m, i.e., on such A
that Fm,A ∈ A(n) and Fm,A(1B) = m(B) for all B ⊆ N (here 1B stands for the
indicator of the set B).

Remark 1. There was shown in [7] that (among others) all copulas are suitable to
be taken in rôle of A in (3). For instance, taking A = Π, where Π(x) =

∏n
i=1 xi

is the product copula, we obtain the well-known Owen multilinear extension
(see [10]).

The second approach occured recently in [2] and is based on replacing the
product of Mm(A) and minimum operator in the formula (2) by some function
F : R × [0, 1] → R in the following way:

Let m ∈ M(n), F : R × [0, 1] → R be a function bounded on [0, 1]2. Define
the function IF

m : [0, 1]n → R by

IF
m(x) =

∑

∅�=B⊆N

F (Mm(B),min
i∈B

{xi}). (4)

The authors focused on functions F yielding an aggregation function IF
m for all

capacities m ∈ M(n).

Remark 2. It was shown in [2] that all functions F yielding for all m ∈ M(n)

aggregation functions IF
m with a given diagonal section δ ∈ A(1) are exactly

those of the form

F (u, v) = u h(v) +
δ(v) − h(v)

2n − 1
, (5)

where h : [0, 1] → R is a function satisfying

−δ(y) − δ(x)
2n − 2

≤ h(y) − h(x) ≤ δ(y) − δ(x),
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for all (x, y) ∈ [0, 1]2, such that x < y.
However, there is no full characterization of all functions F yielding an aggre-

gation function IF
m for every m ∈ M(n) in [2].

3 Double Generalization of the Lovász Extension Formula

Let F : R × [0, 1] → [0, 1] be a function bounded on [0, 1]2, A be an aggrega-
tion function A ∈ A(n), m be a capacity m ∈ M(n). We define the function
Im

F,A : [0, 1]n → R as

Im
F,A(x) =

∑

∅�=B⊆N

F (Mm(B), A(xB)), (6)

where (xB)i = xi whenever i ∈ B and (xB)i = 1 otherwise.

Lemma 1. Let F : R × [0, 1] → R be a function bounded on [0, 1]2 and c ∈ R.
Let Fc : R × [0, 1] → R be a function defined by

Fc(x, y) = F (x, y) + c(x − 1
2n − 1

).

Then, that for any m ∈ M(n), it holds Im
F,A(x) = Im

Fc,A(x) for all x ∈ [0, 1]n.

Proof. Since
∑

∅�=B⊆N

c

(
Mm(B) − 1

2n − 1

)
= 0, the result follows.

Consequently, one can consider F (0, 0) = 0 with no loss of generality (compare
with Proposition 3.1 in [2]).

Let us define

F0 = {F : R × [0, 1] → R |F (0, 0) = 0 and F is bounded on [0, 1]2}
Definition 6. A function F ∈ F0 is I-compatible with an aggregation function
A ∈ A(n) iff Im

F,A ∈ A(n) for all m ∈ M(n).

Note that, according to Remark 1, the product operator Π(u, v) = uv is I-
compatible with every copula. Next, according to Remark 2, all binary functions
of the form (5) are I-compatible with A = min.

Example 1. Let F (u, v) = v
2n−1 , A ∈ A(n) be a conjunctive aggregation function.

We have
Im

F,A(x) =
1

2n − 1

∑

∅�=B⊆N

A(xB).

Clearly, it is a monotone function and Im
F,A(1) = 1. Moreover, conjunctivity of

A gives Im
F,A(0) = 0. Thus, Im

F,A is an aggregation function for all capacities
m ∈ M(n) and therefore F is I-compatible with every conjunctive aggregation
function A ∈ A(n).
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Example 2. Let f : [0, 1] → [0, 1] be a nondecreasing function such that f(0) = 0
and f(1) = 1, i.e., f ∈ A(1). Let F (u, v) = (2 − 2n)u + f(v). Then F is I-
compatible with every disjunctive aggregation function A ∈ A(n). Indeed, dis-
junctivity of A implies A(xB) = 1 for all x ∈ [0, 1]n, ∅ �= B � N . Then, using
(1), we obtain

Im
F,A(x) = (2 − 2n)

∑

∅�=B⊆N

Mm(B) +
∑

∅�=B⊆N

f(A(xB))

= 2 − 2n + f(A(x)) +
∑

∅�=B�N

f(A(xB))

= 2 − 2n + f(A(x)) + 2n − 2 = f(A(x)),

which is an aggregation function for all m ∈ M(n).
On the other hand, for n > 1, F is not I-compatible with the minimal

aggregation function A∗ defined as A∗(x) = 1 if x = 1 and A∗(x) = 0 otherwise,
since in this case Im

F,A∗(x) = 2 − 2n for all x �= 1. Note that for n = 1 we obtain
Im

F,A∗ = A∗.

For a measure m ∈ M(2) let us denote m({1}) = a and m({2}) = a.

Example 3. Let n = 2. Let F (u, v) = u vu+1, A(x, y) = max{x + y − 1, 0}. Then

Im
F,A(x, y) =

{
axa+1 + byb+1 + (1 − a − b)(x + y − 1)2−a−b if x + y ≥ 1
axa+1 + byb+1 otherwise ,

which is an aggregation function for all m ∈ M(2), thus F is I-compatible with A.
However, taking a disjunctive aggregation function in rôle of A, we obtain

Im
F,A(x, y) = a + b + (1 − a − b)A(x, y)2−a−b,

which is not an aggregation function for all capacities up to the minimal one
(a = b = 0). Hence, F is not I-compatible with any disjunctive aggregation
function.

4 Binary Case

Let n = 2. Then the function Im
F,A defined by (6) can be expressed as

Im
F,A(x, y) = F (a,A(x, 1)) + F (b, A(1, y)) + F (1 − a − b, A(x, y)). (7)

Proposition 2. Let F ∈ F0, A ∈ A(2). Then F is I-compatible with A iff the
following conditions are satisfied

(i) There exist constants k, κ ∈ R such that for any u ∈ R2 = [−1, 1] it holds
F (u,A(0, 1)) = F (u,A(1, 0)) = k(u − 1

2 )
F (u, 0) = ku,
F (u, 1) = κu + 1−κ

3 .
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(ii) For all x, x′, y, y′ ∈ [0, 1] such that x ≤ x′ and y ≤ y′ it holds

F (a,A(x′, 1))−F (a,A(x, 1))+F (1−a−b, A(x′, y))−F (1−a−b, A(x, y)) ≥ 0

and

F (b, A(1, y′))−F (b, A(1, y))+F (1−a−b, A(x, y′))−F (1−a−b, A(x, y)) ≥ 0,

for any a, b ∈ [0, 1].

Proof. It can easily be checked that conditions (i) ensure boundary conditions
Im

F,A(0, 0) = 0 and Im
F,A(1, 1) = 1. To show necessity, let us consider the following

equation:

Im
F,A(0, 0) = F (a,A(0, 1)) + F (b, A(1, 0)) + F (1 − a − b, A(0, 0)) = 0,

for all a, b ∈ [0, 1].
Denoting F (u,A(0, 1)) = f(u), F (u,A(1, 0)) = h(u) and F (u, 0) = g(u), for

u ∈ [−1, 1], the previous equation takes form

f(a) + h(b) + g(1 − a − b) = 0, (8)

for all a, b ∈ [0, 1]. Following techniques used for solving Pexider’s equation (see
[1]), we can put a = 0 and b = 0 respectively, obtaining

f(0) + h(b) + g(1 − b) = 0,

f(a) + h(0) + g(1 − a) = 0.

Thus, for any t ∈ [0, 1], we have

f(0) + h(t) + g(1 − t) = 0,

f(t) + h(0) + g(1 − t) = 0.

Consequently

h(t) = f(t) + f(0) − h(0), (9)
g(t) = −f(1 − t) − h(0). (10)

Therefore, formula (8) turns into

f(a + b) = f(a) + f(b) + f(0) − 2h(0),

for all a, b ∈ [0, 1]. Now, denoting ϕ(t) = f(t) + f(0) − 2h(0), we get

ϕ(a + b) = ϕ(a) + ϕ(b), (11)

which is the Cauchy equation. Taking a = b = 0, we get ϕ(0) = 0. Therefore,
putting a = t, b = −t, we get ϕ(t) = −ϕ(−t), i.e., ϕ is an odd function. Since we
suppose F to be bounded on [0, 1]2, according to Aczél [1], all solutions of the
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Eq. (11) on the interval [−1, 1] can be expressed as ϕ(t) = kt, for some k ∈ R.
Therefore,

f(t) = kt − f(0) + 2h(0),

for all t ∈ [−1, 1], which for t = 0 gives f(0) = h(0). Denoting f(0) = c, by (9)
and (10) we obtain

f(t) = kt + c,

h(t) = kt + c,

g(t) = −f(1 − t) − h(0) = kt − k − 2c.

Since by assumption g(0) = F (0, 0) = 0, we have c = −k
2 and consequently,

f(t) = h(t) = k(t − 1
2
), (12)

g(t) = kt, (13)

for all t ∈ [−1, 1] as asserted.
The second boundary condition for Im

F,A gives

Im
F,A(1, 1) = F (a,A(1, 1)) + F (b, A(1, 1)) + F (1 − a − b, A(1, 1)) = 1,

for all a, b ∈ [0, 1]. As A is an aggregation function, it holds A(1, 1) = 1. Denoting
F (u, 1) = ψ(u) we obtain

ψ(a) + ψ(b) + ψ(1 − a − b) = 1,

for all a, b ∈ [0, 1]. Similarly as above, this equation can be transformed into the
Cauchy equation (see also [2]) having all solutions of the form ψ(t) = κt + 1−κ

3 ,
for κ ∈ R and t ∈ [−1, 1].

The conditions (ii) are equivalent to monotonicity of Im
F,A, which completes

the proof.

Considering aggregation functions satisfying A(0, 1) = A(1, 0) = 0 (e.g., all
conjunctive aggregation functions are involved in this subclass), the conditions
in Proposition 2 ensuring the boundary conditions of Im

F,A can be simplified in
the following way.

Corollary 1. Let F ∈ F0, A ∈ A(2) be an aggregation function with A(0, 1) =
A(1, 0) = 0. Then the following holds:

(i) Im
F,A(0, 0) = 0 iff F (u, 0) = 0 for any u ∈ R2,

(ii) Im
F,A(1, 1) = 1 iff there exist a constant κ ∈ R such that

F (u, 1) = κu + 1−κ
3 for any u ∈ R2. Moreover, if F is I-compatible with A,

then κ ∈ [− 1
2 , 1].
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Proof. We have F (u,A(0, 1)) = F (u,A(1, 0)) = F (u, 0) for all u ∈ Rn. The
conditions (i) in Proposition 2 yield k(u − 1

2 ) = ku, and consequently k = 0,
thus F (u, 0) = 0 for all u ∈ Rn as asserted.

Supposing that F is I-compatible with A and considering nondecreasingness
of Im

F,A in the first variable, we obtain

0 ≤ Im
F,A(0, 0) − Im

F,A(1, 0)
= F (a,A(0, 1)) − F (a,A(1, 1)) + F (1 − a − b, A(0, 0)) − F (1 − a − b, A(1, 0))
= F (a, 0) − F (a, 1) + F (1 − a − b, 0) − F (1 − a − b, 0)
= F (a, 0) − F (a, 1),

for all a ∈ [0, 1].
Hence,

0 = F (u, 0) ≤ F (u, 1) = κu +
1 − κ

3

for all u ∈ [0, 1] and consequently − 1
2 ≤ κ ≤ 1, which completes the proof.

Considering aggregation functions satisfying A(0, 1) = A(1, 0) = 1 (e.g., all
disjunctive aggregation functions are involved in this subclass), the conditions
in Proposition 2 ensuring the boundary conditions of Im

F,A can be simplified in
the following way.

Corollary 2. Let F ∈ F0, A ∈ A(2) be an aggregation function with A(0, 1) =
A(1, 0) = 1. Then the following holds:

(i) Im
F,A(0, 0) = 0 iff F (u, 0) = −2u for any u ∈ R2,

(ii) Im
F,A(1, 1) = 1 iff F (u, 1) = −2u + 1 for any u ∈ R2,

Proof. Since A(0, 1) = A(1, 0) = 1, the Eq. (8) takes form

f(a) + f(b) + g(1 − a − b) = 0,

for all a, b ∈ [0, 1]. Taking b = 1 − a and considering g(0) = 0 we obtain

f(a) = −f(1 − a),

for all a ∈ [0, 1], and thus f( 12 ) = 0. Proposition 2(i) yields

F

(
1
2
, 1

)
=

κ

2
+

1 − κ

3
= 0,

thus κ = −2, and consequently formulae (12),(13) imply the assertion.

5 Conclusion

We have introduced a new functional Im
F,A generalizing the Lovász extension for-

mula (or the Choquet integral expressed in terms of Möbius transform) using
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simultaneously two known approaches. We have investigated when the obtained
functional is an aggregation function for all capacities and exemplified positive
and negative instances. In case of the binary functional we have found a charac-
terization of all pairs (F,A) which are I-compatible, i.e., yielding an aggregation
function Im

F,A for all capacities m. In our future reasearch we will focus on the
characterization of all I-compatible pairs (F,A) in general n-ary case. Another
interesting unsolved problem is the problem of giving back capacity, i.e., char-
acterization of pairs (F,A) satisfying Im

F,A(1E) = m(E) for all E ⊆ N .
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