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Abstract. In many practical situations, we only know the interval con-
taining the quantity of interest, we have no information about the prob-
abilities of different values within this interval. In contrast to the cases
when we know the distributions and can thus use Monte-Carlo simula-
tions, processing such interval uncertainty is difficult — crudely speaking,
because we need to try all possible distributions on this interval. Some-
times, the problem can be simplified: namely, for estimating the range of
values of some characteristics of the distribution, it is possible to select
a single distribution (or a small family of distributions) whose analysis
provides a good understanding of the situation. The most known case is
when we are estimating the largest possible value of Shannon’s entropy:
in this case, it is sufficient to consider the uniform distribution on the
interval. Interesting, estimating other characteristics leads to the selec-
tion of the same uniform distribution: e.g., estimating the largest possible
values of generalized entropy or of some sensitivity-related characteris-
tics. In this paper, we provide a general explanation of why uniform
distribution appears in different situations — namely, it appears every
time we have a permutation-invariant optimization problem with the
unique optimum. We also discuss what happens if we have an optimiza-
tion problem that attains its optimum at several different distributions
— this happens, e.g., when we are estimating the smallest possible value
of Shannon’s entropy (or of its generalizations).
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1 Formulation of the Problem

Interval Uncertainty is Ubiquitous. When an engineer designs an object,
the original design comes with exact numerical values of the corresponding quan-
tities, be it the height of ceiling in civil engineering or the resistance of a certain
resistor in electrical engineering. Of course, in practice, it is not realistic to main-
tain the exact values of all these quantities, we can only maintain them with some
tolerance. As a result, the engineers not only produce the desired (“nominal”)
value x of the corresponding quantity, they also provide positive and negative
tolerances e > 0 and e_ > 0 with which we need to maintain the value of this
quantity. The actual value must be in the interval x = [z, ], where z o e
and T < 2 + 4.

All the manufacturers need to do is to follow these interval recommendations.
There is no special restriction on probabilities of different values within these
intervals — these probabilities depends on the manufacturer, and even for the
same manufacturer, they may change every time the manufacturer makes some
adjustments to the manufacturing process.

Data Processing Under Interval Uncertainty is Often Difficult. Because
of the ubiquity of interval uncertainty, many researchers have considered different
data processing problems under this uncertainty; this research area is known as
interval computations; see, e.g., [5,10,11,14].

The problem is that the corresponding computational problems are often very
complex, much more complex than solving similar problems under probabilistic
uncertainty — when we know the probabilities of different values within the corre-
sponding intervals. For example, while for the probabilistic uncertainty, we can,
in principle, always use Monte-Carlo simulations to understand how the input
uncertainty affects the result of data processing, a similar problem for interval
uncertainty is NP-hard already for the simplest nonlinear case when the whole
data processing means computing the value of a quadratic function — actually,
it is even NP-hard if we want to find the range of possible values of variance in
a situation when inputs are only known with interval uncertainty [8,13].

This complexity is easy to understand: interval uncertainty means that we
may have different probability distributions on the given interval. So, to get
guaranteed estimates, we need, in effect, to consider all possible distributions —
which leads to very time-consuming computations. For some problems, this time
can be sped up, but in general, the problems remain difficult.

It is Desirable to Have a Reasonably Small Family of Distributions
Representing Interval Uncertainty. In the ideal world, we should always
take into account interval uncertainty — i.e., take into account that, in principle,
all mathematically possible probability distributions on the given interval are
actually possible.

However, as we have just mentioned, many of the corresponding interval
computation problems are NP-hard. In practical terms, this means that the
corresponding computations will take forever.



72 M. Beer et al.

Since in such situations, it is not possible to exactly take interval uncertainty
into account — i.e., we cannot consider all possible distributions on the interval
— a natural idea is to consider some typical distributions. This can be a finite-
dimensional family of distributions, this can be even a finite set of distributions
— or even a single distribution. For example, in measurements, practitioners
often use uniform distributions on the corresponding interval; this selection is
even incorporated in some international standards for processing measurement
results; see, e.g., [14].

Of course, we need to be very careful which family we choose: by limiting the
class of possible distributions, we introduce an artificial “knowledge”, and thus,
modify the data processing results. So, we should select the family depending on
what characteristic we want to estimate — and beware that a family that works
perfectly well for one characteristic may produce a completely misleading result
when applied to some other desired characteristic. Examples of such misleading
results are well known — and we will present some such results later.

Continuous vs. Discrete Distributions: Idealized Mathematical
Description vs. Practical Description. Usually, in statistics and in mea-
surement theory, when we say that the actual value x belongs to the interval
[a,b], we assume that x can take any real value between a and b. However, in
practice, even with the best possible measuring instruments, we can only mea-
sure the value of the physical quantity x with some uncertainty h. Thus, from
the practical viewpoint, it does not make any sense to distinguish between, e.g.,
the values @ and a + h — even with the best measuring instruments, we will not
be able to detect this difference.

From the practical viewpoint, it makes sense to divide the interval [a, b] into
small subintervals [a,a + hl,[a + h,a + 2h], ... within each of which the values
of x are practically indistinguishable.

Correspondingly, to describe the probabilities of different values x, it is suf-
ficient to find the probabilities py, po, ..., p, that the actual value z is in one of
these small subintervals:

— the probability p; that z is in the first small subinterval [a, a + h];
— the probability py that x is in the first small subinterval [a + h, a + 2h]; etc.

n
These probabilities should, of course, add up to 1: > p; = 1.
i=1
In the ideal case, when we get more and more accurate measuring instruments
—i.e., when h — 0 — the corresponding discrete probability distributions will tend

to the corresponding continuous distribution. So, from this viewpoint:

— selecting a probability distribution means selecting a tuple of values p =
(pla s 7pn)a and

— selecting a family of probability distributions means selecting a family of such
tuples.

First Example of Selecting a Family of Distributions: Estimating Max-
imum Entropy. Whenever we have uncertainty, a natural idea is to provide a
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numerical estimate for this uncertainty. It is known that one of the natural mea-
n
sures of uncertainty is Shannon’s entropy — 3 p;-logs(p;); see, e.g., [6,13]. When
i=1

we know the probability distribution, i.e., when we know all the values p;, then
the above formula enables us to uniquely determine the corresponding entropy.

However, in the case of interval uncertainty, we can have several different
tuples, and, in general, for different tuples, entropy is different. As a measure of
uncertainty of the situation, it is reasonable to take the largest possible value.
Indeed, Shannon’s entropy can be defined as the average number of binary
(“yes”-“no”) questions that are needed to uniquely determine the situation: the
larger this number, the larger the initial uncertainty. Thus, it is natural to take
the largest number of such questions as a characteristic of interval uncertainty.

For this characteristic, we want to select a distribution — or, if needed, a fam-
ily of distributions — whose entropy is equal to the largest possible entropy of all
possible probability distributions on the interval. Selecting such a “most uncer-
tain” distribution is known as the Mazximum FEntropy approach; this approach
has been successfully used in many practical applications; see, e.g., [6].

n
It is well known that out of all possible tuples with Y p; = 1, the entropy is
i=1

the largest possible when all the probabilities are equal to each other, i.e., when

pr=...=pp=1/n.

In the limit A — 0, such distributions tend to the uniform distribution on
the interval [a, b]. This is one of the reasons why, as we have mentioned, uniform
distributions are recommended in some measurement standards.

Modification of This Example. In addition to Shannon’s entropy, there are

other measures of uncertainty — which are usually called generalized entropy.
n

For example, in many applications, practitioners use the quantity — > p* for
i=1

some « € (0,1). It is known that when a@ — 0, this quantity, in some reasonable

sense, tends to Shannon’s entropy — to be more precise, the tuple at which the

generalized entropy attains its maximum under different condition tends to the

tuple at which Shannon’s entropy attains its maximum.

The maximum of this characteristic is also attained when all the probabilities
p; are equal to each other.

Other Examples. The authors of [4] analyzed how to estimate sensitivity of
Bayesian networks under interval uncertainty. It also turned out that if, for the
purpose of this estimation, we limit ourselves to a single distribution, then the
most adequate result also appears if we select a uniform distribution, i.e., in
effect, the values p; = ... = py; see [4] for technical details.

Idea. The fact that the same uniform distribution appears in many different
situations, under different optimality criteria, make us think that there must be
a general reason for this distribution. In this paper, we indeed show that there
is such a reason.
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Beyond the Uniform Distribution. For other characteristics, other possible
distributions provide a better estimate. For example, if instead of estimating
the largest possible value of the entropy, we want to estimate the smallest possi-
ble value of the entropy, then the corresponding optimal value 0 is attained for
several different distributions. Specifically, there are n such distributions corre-
sponding to different values ig = 1, ..., n. In each of these distributions, we have
Di, = 1 and p; = 0 for all 7 # 4.

In the continuous case h — 0, these probability distributions correspond to
point-wise probability distributions in which a certain value zg appears with
probability 1.

Similar distributions appear for several other optimality criteria: e.g., when
we minimize generalized entropy instead of minimizing Shannon’s entropy. A nat-
ural question is: how can we explain that these distributions appear as solutions
to different optimization problems? Similar to the uniform case, there should
also be a general explanation — and a simple general explanation will indeed be
provided in this paper.

2 Analysis of the Problem

What Do Entropy, Generalized Entropy, etc. Have in Common? We
would like to come up with a general result that generalizes both the maximum
entropy, the maximum generalized entropy, and other cases. To come up with
such a generalization, it is reasonable to analyze what these results have in
common.

Let Us Use Symmetries. In general, our knowledge is based on symmetries,
i.e., on the fact that some situations are similar to each other. Indeed, if all the
world’s situations were completely different, we would not be able to make any
predictions. Luckily, real-life situations have many features in common, so we
can use the experience of previous situations to predict future ones.

The idea of using symmetries is well-known to many readers. However, since
not everyone is very familiar with this idea, we added a brief explanation in
this subsection. Readers who are well familiar with the idea of symmetry are
welcome to skip the rest of this subsection, and go straight to the subsection
about permutations.

So here is our brief explanation. For example, when a person drops a pen,
it starts falling down to Earth with the acceleration of 9.81 m/s2. If this person
moves to a different location and repeats the same experiment, he or she will get
the exact same result. This means that the corresponding physics is invariant
with respect to shifts in space.

Similarly, if the person repeats this experiment in a year, the result will be
the same. This means that the corresponding physics is invariant with respect
to shifts in time.

Alternatively, if the person turns around a little bit, the result will still be
the same. This means that the underlying physics is also invariant with respect
to rotations, etc.
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This is a very simple example, but such symmetries are invariances are
actively used in modern physics (see, e.g., [1,15]) — and moreover, many pre-
viously proposed fundamental physical theories such as:

— Maxwell’s equations that describe electrodynamics,
— Schroedinger’s equations that describe quantum phenomena,
— Einstein’s General Relativity equation that describe gravity,

can be derived from the corresponding invariance assumptions; see, e.g.,
[2,3,7,9].

Symmetries also help to explain many empirical phenomena in computing;
see, e.g., [12]. From this viewpoint, a natural way to look for what the two
examples have in common is to look for invariances that they have in common.

Permutations — Natural Symmetries in the Entropy Example. We have

n probabilities pi,...,p,. What can we do with them that would preserve the

entropy? In principle, we can transform the values into something else, but the

easiest possible transformations is when we do not change the values themselves,

just swap them.

Bingo! Under such swap, the value of the entropy does not change. In precise

n n

terms, both the objective function S = — > p;-In(p;) and the constraint > p; =
i=1 i=1

1 do not change is we perform any permutation

m:{1,...,n} = {1,...,n},

i.e., replace the values pi,...,p, with the permuted values pr(1),...,Pr(n)-
Interestingly, the above-described generalized entropy is also permutation-
invariant. Thus, we are ready to present our general results.

3 Our Results

Definition 1

- We say that a function f(pi,...,pn) is permutation-invariant if for every
permutation w: {1,...,n} — {1,...,n}, we have

f(pla"'7pn) = f(pﬂ‘(l))7pﬂ‘(n))

— By a permutation-invariant optimization problem, we mean a problem of opti-
mizing a permutation-invariant function f(p1,...,pn) under constraints of
the type gi(p1,...,Pn) = a; or hj(p1,...,pn) > b; for permutation-invariant
functions g; and h;.

Comment. In other words, we consider the following problem:

— given permutation-invariant functions f(p1,...,pn), g1(P1,- -+ 0n), g2(P1, - -,
D2)y -y hi(p1,y -3 Pn), ha(p1,---,02), - .., and values aq, ag, ..., by, b, ...;
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n
— find: among all tuples p = (p1,...,pn) that satisfy the conditions Y p; =1,
i=1

91(P17~-~7pn) = ai, 92(p17~-~7pn) =4az, ...,

and
hl(pla"'7pn) Z b17 hQ(plv" 7pn) Z b27

find the tuple with the largest (or smallest) possible value of the objective
function f(p1,...,pn).

Proposition 1. If a permutation-invariant optimization problem has only one
solution, then for this solution, we have p1 = ... = p,.

Discussion. This explains why we get the uniform distribution in several cases:
in the maximum entropy case, in the maximum generalized entropy case, etc.

Proof. We will prove this result by contradiction. Suppose that the values p;
are not all equal. This means that there exist ¢ and j for which p; # p;. Let us
swap p; and p;, and denote the corresponding values by pj, i.e.:

— we have p} = pj,
— we have p’; = p;, and
— we have p}, = py, for all other k.

Since the values p; satisfy all the constraints, and all the constraints
are permutation-invariant, the new values p, also satisfy all the con-
straints. Since the objective function is permutation-invariant, we have
fp1,-..,pn) = f®Y,...,p)). Since the values (p1,...,pn) were optimal, the
values (p},...,pl) # (p1,...,pn) are thus also optimal — which contradicts to
the assumption that the original problem has only one solution.

This contradiction proves for the optimal tuple (p1, ..., p,) that all the values
p; are indeed equal to each other. The proposition is proven.

Discussion. What is the optimal solution is not unique? We can have a case
when we have a small finite number of solutions.
We can also have a case when we have a 1-parametric family of solutions
— i.e., a family depending on one parameter. In our discretized formulation,
each parameter has n values, so this means that we have n possible solutions.
Similarly, a 2-parametric family means that we have n? possible solutions, etc.
Here are precise definitions and related results.

Definition 2

- We say that a permutation-invariant optimization problem with n unknowns

P1,---,Pn has a small finite number of solutions if it has fewer than n solu-
tions.

- We say that a permutation-invariant optimization problem with n unknowns
P1s--.,Pn has a d-parametric family of solutions if it has no more than n®

solutions.
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Proposition 2. If a permutation-invariant optimization problem has a small
finite number of solutions, then it has only one solution.

Discussion. Due to Proposition 1, in this case, the only solution is the uniform
distribution p; = ... = py,.

Proof. Since ) p; = 1, there is only one possible solution for which p; = ... =
D the solution for which all the values p; are equal to 1/n.

Thus, if the problem has more than one solution, some values p; are different
from others — in particular, some values are different from p;. Let S denote the
set of all the indices j for which p; = p1, and let m denote the number of elements
in this set. Since some values p; are different from p;, we have 1 < m <n — 1.

Due to permutation-invariance, each permutation of this solution is also a
solution. For each m-size subset of the set of n-element set of indices {1,...,n},
we can have a permutation that transforms S into this set and thus, produces

n
a new solution to the original problem. There are < ) such subsets. For all m
m

n
from 1 to n — 1, the smallest value of the binomial coefficient < ) is attained
m

when m = 1 or m = n — 1, and this smallest value is equal to n. Thus, if there
is more than one solution, we have at least n different solutions — and since we
assumed that we have fewer than n solutions, this means that we have only one.
The proposition is proven.

Proposition 3. If a permutation-invariant optimization problem has a 1I-
parametric family of solutions, then this family of solutions is characterized by a
real number ¢ < 1/(n—1), for which all these solutions have the following form:
p; = ¢ for all i but one and p;, =1 — (n— 1) - ¢ for the remaining value iy.

Discussion. In particular, for ¢ = 0, we get the above-mentioned 1-parametric
family of distributions for which Shannon’s entropy (or generalized entropy)
attain the smallest possible value.

Proof. As we have shown in the proof of Proposition 2, if in one of the solutions,
for some value p; we have m different indices j with this value, then we will have

n
at least ( ) different solutions. For all m from 2 to n — 2, this number is at
m

least as large as (Z) = w and is, thus, larger than n.

Since overall, we only have n solutions, this means that it is not possible to
have 2 < m < n — 2. So, the only possible values of m are 1 and n — 1.

If there was no group with n — 1 values, this would means that all the groups
must have m = 1, i.e., consist of only one value. In other words, in this case,
all n values p; would be different. In this case, each of n! permutations would
lead to a different solution — so we would have n! > n solutions to the original
problem — but we assumed that overall, there are only n solutions. Thus, this

case is also impossible.
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So, we do have a group of n — 1 values with the same p;. Then we get exactly
one of the solutions described in the formulation of the proposal, plus solutions
obtained from it by permutations — which is exactly the described family.

The proposition is proven.

4 Conclusions

Traditionally, in engineering, uncertainty is described by a probability distri-
bution. In practice, we rarely know the exact distribution. In many practical
situations, the only information we know about a quantity is the interval of
possible values of this quantity — and we have no information about the prob-
ability of different values within this interval. Under such interval uncertainty,
we cannot exclude any mathematically possible probability distribution. Thus,
to estimate the range of possible values of the desired uncertainty characteristic,
we must, in effect, consider all possible distributions. Not surprisingly, for many
characteristics, the corresponding computational problem becomes NP-hard.

For some characteristics, we can provide a reasonable estimate for their
desired range if instead of all possible distributions, we consider only distribu-
tions from some finite-dimensional family. For example, to estimate the largest
possible value of Shannon’s entropy (or of its generalizations), it is sufficient to
consider only the uniform distribution. Similarly, to estimate the smallest possi-
ble value of Shannon’s entropy or of its generalizations, it is sufficient to consider
point-wise distributions, in which a single value from the interval appears with
probability 1. The fact that different optimality criteria lead to the same dis-
tribution — or to the same family of distributions — made us think that there
should be a general reason for the appearance of these families. In this paper,
we show that indeed, the appearance of these distributions and these families
can be explained by the fact that all the corresponding optimization problems
are permutation-invariant.

Thus, in the future, if a reader encounters a permutation-invariant optimiza-
tion problem for which it is known that there is a unique solution — or that there
is only a l-parametric family of solutions — then there is no need to actually
solve the corresponding problem (which may be complex to directly solve). In
such situations, it is possible to simply use our general symmetry-based results
for finding the corresponding solution — and thus, for finding a distribution (or a
family of distributions) that, for the corresponding characteristic, best represent
interval uncertainty.
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