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Abstract. Recent advancements and applications in artificial intelli-
gence (AI) and machine learning (ML) have highlighted the need for
explainable, interpretable, and actionable AI-ML. Most work is focused
on explaining deep artificial neural networks, e.g., visual and image cap-
tioning. In recent work, we established a set of indices and processes for
explainable AT (XAI) relative to information fusion. While informative,
the result is information overload and domain expertise is required to
understand the results. Herein, we explore the extraction of a reduced
set of higher-level linguistic summaries to inform and improve communi-
cation with non-fusion experts. Our contribution is a proposed structure
of a fusion summary and method to extract this information from a
given set of indices. In order to demonstrate the usefulness of the pro-
posed methodology, we provide a case study for using the fuzzy integral
to combine a heterogeneous set of deep learners in remote sensing for
object detection and land cover classification. This case study shows the
potential of our approach to inform users about important trends and
anomalies in the models, data and fusion results. This information is
critical with respect to transparency, trustworthiness, and identifying
limitations of fusion techniques, which may motivate future research and
innovation.

Keywords: Deep learning + Machine learning - Information fusion -
Information aggregation - Fuzzy integral - Explainable artificial
intelligence + XAI + Protoform -+ Linguistic summary

1 Introduction

We live in a world that is recognizing the potential of artificial intelligence (AI)
and machine learning (ML) in everyday settings. These tools have been inte-
grated into many aspects of our daily lives—whether we realize it or not. These
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Fig. 1. Graphical illustration of fusion-2-text for the case study explored herein involv-
ing object detection and land cover classification in remote sensing. First, multiple
machine learning (ML) models are trained in a cross validation context. Next, fusion
is used to combat the fact that no single ML architecture is best across all data and
classes. However, what have we learned? Fusion-2-text is used to discover a succinct
set of important summaries or anomalies for a user in or across models.

tools, which were birthed from academic exercise, are no longer just in academia;
they have found home in many different applications. Various Als are being used
to solve real-world problems, or they simply make our lives more convenient.
Many of these algorithms are built on data-driven methods which scientists,
researchers, and engineers have creatively developed and applied mathematics
to build. Despite the mathematical foundations, it has become common for these
tools to produce solutions that are not understandable. However, many applica-
tions require an explanation as to why a machine made a particular decision.

One task in the Al community is data or information fusion. One type of
fusion revolves around the Choquet Integral (ChI), which can be learned from
data. There are many ways to learn the Chl, the reviewer can refer to [18] for
a recent review. However, once these parameters are learned, explanations can
be derived from the data and learned model. In [9], we exploited properties
of the Chl to understand which parameters in a learned model are supported
by data. In [17], we exploited this knowledge to produce indices that describe
different properties of a learned Chl. Unfortunately, the large quantity of values
that our indices produce can be daunting and can lead to information overload.
For example, when fusing multiple deep convolutional neural networks (DCNN)
for classification, there will be one ChI learned per class—a set of XAI indices
for each learned Chl. As a result, there is a need to summarize these results to
explain the model at a higher-level as well as reduce the amount of information
that they produce.
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This begs the question of how do we reduce the number of outputs while
maintaining the integrity of our XAI descriptions. Herein, we explore the pro-
duction of linguistic summaries that concisely describe the relevant information
coming from the XAI indices. Linguistic protoform summaries (LPS) are an
efficacious mechanism of describing data because natural language is easier for
humans to interpret. LPSs are statements with a specific format that are used
to describe data in natural language. LPSs have been shown to be an effective
means to more easily comprehend a set of data. For example, in [14] LPSs were
applied to time-series data, the authors of [26] utilized LPSs to describe the
restlessness of eldercare residents for healthcare, and LPSs have also been used
for data mining for knowledge discovery [15].

An LPS generally follows one of several templates. These templates fall into
the category of simple protoforms or extended protoforms. The simple protoform,
first introduced in [29], is constructed from three different concepts: the quan-
tifier, summarizer, and truth value. An example of a simple protoform is “most
papers are readable”. In this example, the quantifier is “most,” the summarizer
is “readable,” and the truth value would be computed to determine the degree to
which that statement is valid. As time passed, others have extended the simple
protoform’s template [14,28]. While there are several extensions, one example of
an extended protoform (that includes an additional summarizer) is “few papers
are readable and noteworthy”. Not only has the LPS template been modified,
but Yager’s original computation of truth values has been scrutinized. In [25], it
was shown that Yager’s original equations to compute truth may not suited for
all membership functions that model the protoforms because they may produce
non intuitive summaries. As such, [25] and [12] used the Sugeno integral to over-
come shortcomings in Yager’s equations. Moreover, the authors of [3] present a
holistic view of the development of quantifying sentences and the equations that
drive this process.

The main contributions of this paper are as follows. First, we explore the
potential for LPSs to reduce the complexity and amount of XAI information
for the Chl. To the best of our knowledge, this has not been explored to date.
Second, at a high-level, we explore what type of summaries are useful and rele-
vant and should be reported. Third, we propose a way to derive LPSs from two
of our data-centric and model-centric indices. While this is only performed on
two indices herein, due to space, we discuss how our procedures generalize to
other XAI indices. Last, we give a case study for aggregating a set of heteroge-
neous architecture DCNNs for object detection and land cover classification on
a benchmark remote sensing dataset. The benefit of this study is to show actual
summaries and assess if they are useful.

The breakdown of this paper is as follows. In Sect. 2, we give a brief overview
of the Chl and its optimization, and we identify its data supported parameters.
In Sect. 3, we present the X AT indices, Sect. 4 describes how to construct LPSs,
and Sect. 5 shows how to construct fuzzy sets with respect to our indices. Last,
we present our case study in Sect.6 and insights are drawn from our data and
LPSs. Figurel shows the technical breakdown of our fusion-2-text and Fig.1
shows our remote sensing case study.
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2 Choquet Integral

The utility of the Chl has been demonstrated in numerous applications, e.g.,
[4,6,21,24]. The Chl is a powerful, nonlinear aggregation operator that is param-
eterized by a fuzzy measure (FM). Let X = {z1, ...,y } be aset of N information
sources. With respect to a finite domain, the FM, p : 2%X — R, is a function that
satisfies: (i) (boundary condition) p() = 0, and (ii) (monotonicity) if A, B C X,
and A C B, u(A) < p(B)!. It is often convenient to think about the FM as not
just free parameters but as a modeling of interactions (e.g., possibly correlations)
between subsets. The ChI? is

/h op= i hr(5) (M(Aj) — M(Ajfﬂ), (2)
j=1

where 7 is an ordering of h = (h(x1), ..., h(xy))3. Furthermore, h(x;) = h; € R
is the input from source 4, such that hr) > hr2) > ... > hgrv). Last, A;
corresponds to the subset {1y, ..., Tx(; }-

The Chl can alternatively be thought about as N! linear convex sums
(LCS)*5, as each sort of the data yields an LCS. Herein, we follow the nomen-
clature defined in [17], and we call each sort of the data a walk (in the Hasse
diagram).

2.1 Optimization

Defining the FM variables in the Chl is not a trivial task and there are many
ways to identify them, e.g., [5,10,11,16]. However, in our current data-driven
era, it is common place to learn the FM variables. Herein, we use our learning
algorithm put forth in [9]. We do not describe the algorithm due to limited page
length. The techniques proposed herein extend beyond a specific learner, they
are applicable to any Chl derived from data.

2.2 Data Supported Variables

In [9], we established that data supported variables can be identified for the Chl.
A variable is called supported if any walk of the data includes it. For example, let
N =3 and hs > h; > hy. The FM variables that are encountered are u({hs}),
w({h1,hs}) and pu(X). By considering all the given inputs in the training data,
we can easily determine all data supported variables. This fact is important to
many of the upcoming indices (Fig. 2).

! While not required, it is common in practice to impose u(X) = 1.

2 Tt is important to note that when a FM is set (values are specified), the ChI becomes a
specific aggregation operator. For example, consider pu(A) = 1,VA € X, except u(0).
As such, the Chl reduces to the max operator.

3 Hereafter, h(z;) will be shortened to h; for simplicity.

* When u(X) = 1.

® Who share 2V weights.
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Fig. 2. Illustration of computational stages in our fusion-2-text.

3 Existing Low-Level XAI Indices

In [17], we proposed a set of XAI indices—measures/functions that summarize
and highlight important properties about the FM and Chl—in the context of
data-driven learning. In [18], we expanded our initial set of indices, including the
Shapley and interaction index, to operate more accurately on partially observed
domains. In general, our indices can be partitioned into three sets: information
about the FM (the sources and their interactions), inquiries about the FM-ChI
(e.g., what is the specific aggregation), and inquiries about the data relative to
the ChI (e.g., what parts of our model are missing). While each of our indices
provide valuable and different insights, we limit the scope herein to one data
specific index, walk visitation, and one model specific index, the walk centric
Shapley index.

3.1 Walk Centric Shapley

The Walk Centric Shapley (WCS) index is an extension of the Shapley index
[20]. The WCS defines the relative worth of each source with respect to its data
supported variables. This extension is valuable because the traditional Shapley
may be drastically over- or under-estimate the worth of sources as it assumes

that the FM is fully observable. The WC Shapley is
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D)= Y CxalK) (u(K ULi}) - p(K)), (3a)

KEX\ (i)
X|—|K|-DIK|!
(x2(K) = (X1 |X|'! M |1(Ku{i})1(x), (3b)
~ d,(i
Fuli) = —2el) (3¢)

3o (i)’

where K C X \{i} denotes all proper subsets from X that do not include source
¢ and 1 is an indicator function that is 1 if the FM value is data-supported and 0
otherwise. The Shapley values of  is the vector 'i' [@#(1), sy @u(N)] where
Zi:l @H( i) = 1. The WCS values are important because they inform us about
the relative worth of each information source.

3.2 Walk Visitation

Understanding the quality of the information sources is merely one aspect of the
big XAI picture. It is also important to understand the quality (e.g., complete-
ness) of a learned Chl. Herein, we use the walk visitation metric [17], which
describes how many unique walks were taken within the training data. We
quickly summarize the index due to limited page count. The index works by
sorting all samples (according to their input values), finding which walks were
encountered, and dividing the number of times that they were observed by the
total number of samples. The goal of this metric is to determine the degree to
which each walk was observed. If a probability is zero, then a walk was never
seen. Furthermore, if we get a new input for the Chl and its walk was not encoun-
tered in training, then one should question the ChI output. In [17], this index
was used to derive additional indices, like to what degree should we trust an
output of the Chl.

4 Protoforms

Protoform-based linguistic summaries are often an effective liaison between data
the data interpreter. As such, deriving linguistic summaries with respect to the
XAI indices has the potential to effectively reduce the amount of information
by producing concise summaries. Furthermore, as less is often more, there is
also the potential to remediate confusion due to complexity, which can improve
decision making. While there are multiple LPS templates to follow, the simple
protoform will suffice for the insights that we are drawing herein. The simple
protoform takes the following format,

Qy’s are P. (4)

Within the protoform, @ is a linguistic quantifier, y is a set of objects, and P is the
summarizer. Both @ and P are modelled by fuzzy sets over the desired domains.
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Examples of a quantifier that are suitable for our problem are words like “few”,
“many”, or “most”; whereas examples of a summarizer may be “important” or
“observed” when referencing the sources or the walks, respectively. Moreover, an
example of a protoform with respect to the XAI indices may be “few walks are
observed”. With respect to the XAI indices, we produce summaries that describe
the importance of each of the sources across all models and how many walks are
observed in each model. To do this, we use the vocabulary in Fig. 3.

Quantifier (Q) Objects (y) Summarizer (P)

sources important

observed

Fig. 3. Vocabulary used herein to produce fusion LPSs.

An LPS has a value of truth associated with it. This concept, first introduced
by Yager [29], utilizes Zadeh’s calculus to use Eq. 5 to determine the truth value,
T, associated with the linguistic summary. This equation is as follows,

T(Ay'sare P) = A(x- 21, P). (5)

However, Eq.5 may produce non-intuitive results, as noted in [25] and then in
[12]. As a result, the fuzzy integral can also be employed to determine the truth
value; however, for the scope of our case study, Eq.5 will suffice.

5 Fuzzy Sets

As mentioned in Sect.4, Q(x) and P(z) are fuzzy sets. In each case, we use
the trapezoidal membership function for the fuzzy sets, and we have empirically
determined their parameters. This is acceptable for our initial work, as we have
spent a good amount of time working with the Chl and the benchmark data set.
However, in future work these sets and their values clearly should be learned
from data or a set of experts.

5.1 Walk Centric Shapley

To define the fuzzy sets with respect to the WCS, a fuzzy set must be defined for
P(z) (i.e. important) and Q(z) (few, some, many, most). The fuzzy set is defined
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by the trapezoidal membership values from the WCS values. In an ideal fusion
solution, all Shapley values would be equal to ﬁ, meaning equal contribution.
As a result, we consider the source to be important if it has a value greater
than or equal to +. Once P(z) is defined, Q(z) can be modelled. The output
of averaging P(z) is passed to Q(z), and it is between [+, 1] because at least 1
source will be important. As such, the domain of Q(z) is [%, 1]. Using Eq. 5, we
can compute the truth value of each of the statements allowing us to isolate the
most relevant summaries that are produced.

5.2 Walk Visitation

Similar to the fuzzy sets that govern the WCS values, fuzzy sets are used to
model the walk visitation index. For P(z), the fuzzy sets model the concept of
observed and unobserved. In an ideal case, we desire each walk to have an equal
walk visitation index, so with this in mind, we consider the walk to be observed
if z > % Next, the fuzzy set for Q(x) must be modelled. At least 1 walk will
be observed, and it is possible to observe up to however many training samples
exist. As such, the domain of Q(x) is [ﬁ, 1], which is approximately [0, 1]. The
values of each of the fuzzy sets can be found in Table 1.

Table 1. Trapezoidal membership function parameters.

Walk Visitation Quantifier a b ¢ d WC Shapley Quantifier a b ¢ d
102 11 2 3
Few 00 7 7|Few ______ 7T _7_ 7
1 2 3 4 2 25 35 5
Some  _______ 7 7_7 y|Seme 3 g
3 4 5 6 3 45 5.5 6
Many 77 7 7 My G Al il
Most 5 8 1 1 Most 58 1 1
Summarizers a b ¢ d
[Important S N
Observed 0 % 11

6 Case Study

To show how these indices work in a real-world application, we consider the
fusion of a set of 7 different DCNNs for object detection and land classification
of remote sensing data. The DCNNs that we fuse are CaffeNet [13], GoogleNet
[23], ResNet 50 [7], ResNet 101, DenseNet [8], InceptionResNetV2 [22], and
Xception [2]. The dataset is the AID remote sensing data set [27]. This dataset
is composed of 10,000 images over 30 different aerial scene types.

The complete training procedure of how these networks were trained can
be found in [19]. Furthermore, the complete description of how these DCNNs
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are fused can be found in [1]. Due to the nature of the multistep classification
problem (DCNNs and Chl), it is an important step to determine how to split
the data into training and testing. For the DCNNG, five-fold cross validation was
used. This means that four folds are used for training, and one fold is used for
evaluation. From the evaluation fold, two-fold cross validation is used, due to the
limited number of samples in AID. To ensure that each class is approximately
balanced in each of the folds, an approximately equal number of samples were
chosen from each class. There are multiple ways to perform fusion across the
DCNNSs. Herein, we train a Chl for each of the 30 classes. As a result, there are
30 x 7! walk visitation values produced, and 30 x 7 Shapley values produced (a
total of 151,410 values). Using the proposed LPS configuration, we reduce the
XAIT indices to a few sets of LPSs that are more easily comprehended.

6.1 Source Summaries

XAI Question: How Many Sources are Important?

With respect to each Chl, we can determine how many important sources there
are for each class. To produce this set of summaries, we treat each of the 30 Chls
(one per class) as our objects, y. The linguistic summarizer is “important”, and
our quantifiers are “few”, “several”’, “many”, and “most”. Figure4 illustrates
the quantity of summaries that are assigned each of the quantifiers.

Actual

Ideal

Few

Most

\ Several

Fig. 4. Actual versus the ideal distribution of quantifier.

In an ideal case, “most” of the sources would be important, meaning all
sources are contributing to the fusion solution. However, our experiment pro-
duced no summaries of “most sources are important”. The majority of the Chls
are summarized by “several sources are important.” This begs the question of
which sources are important because we now know that not all are important.

XAI Question: How Important is Each Source?

Taking our knowledge from the last set of summaries, it is logical to now
isolate the important sources. To do this, we produce a set of summaries
specifically for each of the sources. We treat each DCNN across all models as
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our objects, y. For example, one set of objects will be GoogleNets, such that
GoogleNets = {GoogleNets,, GoogleNets,, ..., GoogleNetssy }. In Fig. 4, we show
the resulting summaries (Fig. 5).

RESNCR

Important 1.0

ResNet 100s

DenseNets Important 0.92

GoogleNets Important 0.94

CaffeNets Important 0.57

InceptionNet
V2s

Important 1.0

XceptionNets

I -

Fig. 5. LPSs describing the importance of each DCNN with truth degree (gray).

From this set of summaries (with strong truth degrees), we can conclude that
ResNet 50 and ResNet 100 are not contributing to the fusion solution; however,
InceptionNet and XceptionNet are important in most of the Chls, meaning they
are strong contributors. This leads us to conclude that ResNet 50 and ResNet
100 can likely be removed, speeding up inference by reducing DCNNs.

XAT Question: How Many Walks are Observed Per Model?

In this case, the summarizer is “observed,” the objects are each Chl, and the
quantifier is again, “few”, “several”, “many”, and “most”. However, for this
set, there was only one summary ever found, “few walks are observed.” This
quickly magnifies the flaw with these models because many of the possible walks
have not been observed—meaning the FM values of many of the walks are not
actually learned from data. In order to fully learn the Chl, “most” walks must
be observed. Observing few walks means that there is not much diversity in the
data. This highlights that we may have a dominant walk, or that we only ever
observe a relatively low number of walks.

XAT Question: How Observed is Each Walk Across the Data?

Whereas the last summary encapsulated information pertaining to how many
walks are observed per model, this set of summaries answers the question of
how observed is each walk across the entire data set. We consider each specific
walk as an object; for example the walk [1,2,3,4,5,6,7] = {[1,2,3,4,5,6,7]1,
[1,2,3,4,5,6,7]2, ..., [1,2,3,4,5,6,7]30}. When producing these summaries,
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there would be one summary per walk, so in our example, this would gener-
ate 7! summaries, which is far too many for anyone to digest. However, by only
evaluating the walks that are observed in “most” Chls with a high truth degree,
we only consider 5 of the walks. The summaries shown in Fig. 6 are produced.

— —_—

[1,2,3,4,5,6,7]

[1,2,3,4,6,7,5]

[1,2,3,4,7,6,5]

— R—

Fig. 6. Most specific walks are observed.

While each of these 5 walks have a truth value of 1, they are also the only
walks to have the quantifier “most”. There are 4,978 walks that are observed
a “few” times with a truth degree of 1. This leaves 67 walks that are observed
“few” | “several”, or “most” with a truth values less than 1 for each of them. These
summaries clearly highlight that there may be some bias in the data. Specifically,
the first 4 sources are typically encountered in the same order, which shows that
something is not quite right. This allows us to dig into the data to figure out
what might be going on.

6.2 Code

The ability to reproduce an experiment is a cornerstone in the scientific commu-
nity. As such, we provide the code that produced these summaries at the follow-
ing repository, https://github.com/B-Mur/ChoquetIntegral.git. Moreover, the
data set that was used can be found at the following repository, https://github.
com/aminb99/remote-sensing-nn-datasets.

7 Summary and Future Work

Herein, we have proposed and implemented the use of LPSs to reduce a high num-
ber of metrics to a short number of concise and more useful summaries. To our
knowledge, this is the first work that produces linguistic summaries to explain
fusion, without a doubt relative to data-driven learning. Before producing the
summaries, the indices produce a large quantity of metrics that are complex to
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interpret. By producing the summaries, the indices effectively reduce the infor-
mation that must be digested, while maintaining the integrity of the indices. By
first determining only few sources are important, it is a logical step to deter-
mine which sources are important. If all sources were important, it would be
unnecessary to determine the important sources as they are all important.

The walk visitation summaries tell a similar story. Only few walks are ever
observed; this leads us to produce summaries determining the walks are observed
across all data (only 5). Before we produce these summaries, these metrics are a
raw stream of data that are not intuitive, and interpretable only by those with
significant domain experience. However, the summaries allow someone unfamiliar
with the indices (and the values they produce) to be practitioners of XAI with
their fusion. To our knowledge, has never been done before.

In the future, we hope to generate summaries from the remaining X AT indices
to provide more complete and comprehensive insights. By doing this, we will
likely produce extended LPSs such that a single, extended LPS contains more
information than a simple protoform can provide. We will also explore how
to present, in a textual or visual fashion, this information to a human. This
foundation also excites us because it is a structured format or language in which
information can be extracted and then subsequently computed with. Possibilities
including deriving higher-level conclusions about the data, models, and systems,
or perhaps using the information to improve the training and/or use of fusion.

References

1. Anderson, D., Scott, G., Islam, M., Murray, B., Marcum, R.: Fuzzy Choquet inte-
gration of deep convolutional neural networks for remote sensing. In: Pedrycz, W.,
Chen, S.M. (eds.) Computational Intelligence for Pattern Recognition. Studies in
Computational Intelligence, pp. 1-28. Springer, Heidelberg (2018). https://doi.
org/10.1007/978-3-319-89629-8_1

2. Chollet, F.: Xception: deep learning with depthwise separable convolutions. In:
2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp.
1800-1807, July 2017. https://doi.org/10.1109/CVPR.2017.195

3. Delgado, M., Ruiz, M.D., Sénchez, D., Vila, M.A.: Fuzzy quantification: a state
of the art. Fuzzy Sets Syst. 242, 1-30 (2014). https://doi.org/10.1016/j.fss.2013.
10.012.  http://www.sciencedirect.com/science/article/pii/S0165011413004247,
theme: Quantifiers and Logic

4. Du, X., Zare, A.: Multiple instance Choquet integral classifier fusion and regression
for remote sensing applications. IEEE Trans. Geosci. Remote Sens. 1-13 (2018).
https://doi.org/10.1109/TGRS.2018.2876687

5. Du, X., Zare, A., Keller, J.M., Anderson, D.T.: Multiple instance Choquet integral
for classifier fusion. In: 2016 IEEE Congress on Evolutionary Computation (CEC),
pp. 1054-1061, July 2016. https://doi.org/10.1109/CEC.2016.7743905

6. Grabisch, M.: The application of fuzzy integrals in multicriteria decision making.
Eur. J. Oper. Res. 89(3), 445-456 (1996)

7. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
arXiv preprint arXiv:1512.03385 (2015)


https://doi.org/10.1007/978-3-319-89629-8_1
https://doi.org/10.1007/978-3-319-89629-8_1
https://doi.org/10.1109/CVPR.2017.195
https://doi.org/10.1016/j.fss.2013.10.012
https://doi.org/10.1016/j.fss.2013.10.012
http://www.sciencedirect.com/science/article/pii/S0165011413004247
https://doi.org/10.1109/TGRS.2018.2876687
https://doi.org/10.1109/CEC.2016.7743905
http://arxiv.org/abs/1512.03385

126

8.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

B. J. Murray et al.

Huang, G., Liu, Z., van der Maaten, L., Weinberger, K.Q.: Densely connected con-
volutional networks. In: 2017 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 2261-2269, July 2017. https://doi.org/10.1109/CVPR.
2017.243

Islam, M.A., Anderson, D.T., Pinar, A.J., Havens, T.C.: Data-driven compression
and efficient learning of the Choquet Integral. IEEE Trans. Fuzzy Syst. PP(99), 1
(2017). https://doi.org/10.1109/ TFUZZ.2017.2755002

Islam, M.A., Anderson, D., Petry, F., Elmore, P.: An efficient evolutionary algo-
rithm to optimize the Choquet Integral. Int. J. Intell. Syst. 34, 366-385 (2018).
https://doi.org/10.1002/int.22056

Islam, M.A., Anderson, D.T., Pinar, A., Havens, T.C., Scott, G., Keller, J.M.:
Enabling explainable fusion in deep learning with fuzzy integral neural networks.
IEEE Trans. Fuzzy Syst. 1 (2019). https://doi.org/10.1109/tfuzz.2019.2917124
Jain, A., Keller, J.M.: On the computation of semantically ordered truth val-
ues of linguistic protoform summaries. In: 2015 IEEE International Conference
on Fuzzy Systems (FUZZ-IEEE), pp. 1-8, August 2015. https://doi.org/10.1109/
FUZZ-TEEE.2015.7337822

Jia, Y., et al.: Caffe: convolutional architecture for fast feature embedding. In:
Proceedings of the 22nd ACM International Conference on Multimedia, MM 2014,
pp. 675-678. ACM, New York (2014). https://doi.org/10.1145/2647868.2654889
Kacprzyk, J., Wilbik, A., Zadrozny, S.: Mining time series data via linguistic sum-
maries of trends by using a modified Sugeno integral based aggregation. In: 2007
IEEE Symposium on Computational Intelligence and Data Mining, pp. 742-749,
March 2007. https://doi.org/10.1109/CIDM.2007.368950

Kacprzyk, J., Zadrozny, S.: Data mining via protoform based linguistic summaries:
some possible relations to natural language generation. In: 2009 IEEE Symposium
on Computational Intelligence and Data Mining, pp. 217-224, March 2009. https://
doi.org/10.1109/CIDM.2009.4938652

Keller, J.M., Osborn, J.: A reward/punishment scheme to learn fuzzy densities
for the fuzzy integral. In: Proceedings of International Fuzzy Systems Association
World Congress, pp. 97-100 (1995)

Murray, B., Anderson, D., Islam, M.A., Pinar, A., Scott, G., Havens, T.: Explain-
able ai for understanding decisions and data-driven optimization of the Choquet
integral. In: World Congress on Computational Intelligence (WCCI), July 2018
Murray, B., et al.: Explainable AT for the Choquet integral (accepted). IEEE Trans.
Emerg. Top. Comput. Intell.

Scott, G.J., England, M.R., Starms, W.A., Marcum, R.A., Davis, C.H.: Training
deep convolutional neural networks for land-cover classification of high-resolution
imagery. IEEE Geosci. Remote Sens. Lett. 14(4), 549-553 (2017)

Shapley, L.S.: A value for n-person games. Contrib. Theory Games 2, 307-317
(1953)

Smith, R.E., et al.: Genetic programming based Choquet integral for multi-source
fusion. In: IEEE International Conference on Fuzzy Systems, July 2017

Szegedy, C., Ioffe, S., Vanhoucke, V.: Inception-v4, inception-ResNet and the
impact of residual connections on learning. In: AAAT (2016)

Szegedy, C., et al.: Going deeper with convolutions. In: Computer Vision and Pat-
tern Recognition (CVPR) (2015)

Tahani, H., Keller, J.: Information fusion in computer vision using the fuzzy inte-
gral. IEEE Trans. Syst. Man Cybern. 20, 733-741 (1990)


https://doi.org/10.1109/CVPR.2017.243
https://doi.org/10.1109/CVPR.2017.243
https://doi.org/10.1109/TFUZZ.2017.2755002
https://doi.org/10.1002/int.22056
https://doi.org/10.1109/tfuzz.2019.2917124
https://doi.org/10.1109/FUZZ-IEEE.2015.7337822
https://doi.org/10.1109/FUZZ-IEEE.2015.7337822
https://doi.org/10.1145/2647868.2654889
https://doi.org/10.1109/CIDM.2007.368950
https://doi.org/10.1109/CIDM.2009.4938652
https://doi.org/10.1109/CIDM.2009.4938652

25.

26.

27.

28.

29.

Information Fusion-2-Text 127

Wilbik, A., et al.: Evaluation of the truth value of linguistic summaries - case
with nonmonotonic quantifiers. In: Angelov, P., et al. (eds.) Intelligent Systems.
Advances in Intelligent Systems and Computing, vol. 322, pp. 69-79. Springer,
Cham (2014). https://doi.org/10.1007/978-3-319-11313-5_7

Wilbik, A., Keller, J.M., Bezdek, J.C.: Linguistic prototypes for data from elder-
care residents. IEEE Trans. Fuzzy Syst. 22(1), 110-123 (2014). https://doi.org/
10.1109/TFUZZ.2013.2249517

Xia, G., et al.: AID: a benchmark data set for performance evaluation of aerial
scene classification. IEEE Trans. Geosci. Remote Sens. 55(7), 3965-3981 (2017).
https://doi.org/10.1109/TGRS.2017.2685945

Yager, R.R.: Fuzzy summaries in database mining. In: Proceedings the 11th Con-
ference on Artificial Intelligence for Applications, pp. 265-269, February 1995.
https://doi.org/10.1109/CAIA.1995.378813

Yager, R.R.: A new approach to the summarization of data. Inf. Sci. 28(1), 69-86
(1982). https://doi.org/10.1016/0020-0255(82)90033-0


https://doi.org/10.1007/978-3-319-11313-5_7
https://doi.org/10.1109/TFUZZ.2013.2249517
https://doi.org/10.1109/TFUZZ.2013.2249517
https://doi.org/10.1109/TGRS.2017.2685945
https://doi.org/10.1109/CAIA.1995.378813
https://doi.org/10.1016/0020-0255(82)90033-0

	Information Fusion-2-Text: Explainable Aggregation via Linguistic Protoforms
	1 Introduction
	2 Choquet Integral
	2.1 Optimization
	2.2 Data Supported Variables

	3 Existing Low-Level XAI Indices
	3.1 Walk Centric Shapley
	3.2 Walk Visitation

	4 Protoforms
	5 Fuzzy Sets
	5.1 Walk Centric Shapley
	5.2 Walk Visitation

	6 Case Study
	6.1 Source Summaries
	6.2 Code

	7 Summary and Future Work
	References




