Skip to main content

Automatic Classification Rules for Anomaly Detection in Time-Series

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Business Information Processing ((LNBIP,volume 385))

Abstract

Anomaly detection in time-series is an important issue in many applications. It is particularly hard to accurately detect multiple anomalies in time-series. Pattern discovery and rule extraction are effective solutions for allowing multiple anomaly detection. In this paper, we define a Composition-based Decision Tree algorithm that automatically discovers and generates human-understandable classification rules for multiple anomaly detection in time-series. To evaluate our solution, our algorithm is compared to other anomaly detection algorithms on real datasets and benchmarks.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Let us notice that a and b were previously denoted \(\alpha \) and \(\beta \) in [2].

References

  1. Puttagunta, V., Kalpakis, K: Adaptive methods for activity monitoring of streaming data. In: ICMLA, vol. 2, pp. 197–203, June 2002

    Google Scholar 

  2. Ben Kraiem, I., Ghozzi, F., Péninou, A., Teste, O: Pattern-based method for anomaly detection in sensor networks. In: International Conference on Enterprise Information Systems, vol. 1, pp. 104–113, May 2019

    Google Scholar 

  3. Witten, I.H., Frank, E., Hall, M.A., Pal, C.J.: Data Mining: Practical Machine Learning Tools and Techniques, 4th edn. Morgan Kaufmann, Burlington (2016)

    Google Scholar 

  4. Agrawal, S., Agrawal, J.: Survey on anomaly detection using data mining techniques. Procedia Comput. Sci. 60, 708–713 (2015)

    Article  Google Scholar 

  5. Omar, S., Ngadi, A., Jebur, H.H: Machine learning techniques for anomaly detection: an overview. Int. J. Comput. Appl. 79(2) (2013)

    Google Scholar 

  6. Parmar, J.D., Patel, J.T: Anomaly detection in data mining: a review. Int. J. Adv. Res. Comput. Sci. Softw. Eng. 7(4) (2017)

    Google Scholar 

  7. Däubener, S., Schmitt, S., Wang, H., Krause, P., Bäck, T.: Anomaly detection in univariate time series: an empirical comparison of machine learning algorithms. In: ICDM (2019)

    Google Scholar 

  8. Braei, M., Wagner, S.: Anomaly Detection in Univariate Time-series: A Survey on the State-of-the-Art. arXiv preprint arXiv:2004.00433 (2020)

  9. Gupta, B., Rawat, A., Jain, A., Arora, A., Dhami, N.: Analysis of various decision tree algorithms for classification in data mining. Int. J. Comput. Appl. 163(8), 15–19 (2017)

    Google Scholar 

  10. Sinwar, D., Kumar, M: Anomaly detection using decision tree based classifiers. Int. J. Mod. Trends Eng. Res. (IJMTER) 3 (2016)

    Google Scholar 

  11. Reif, M., Goldstein, M., Stahl, A., Breuel, T.M: Anomaly detection by combining decision trees and parametric densities. In: 2008 19th International Conference on Pattern Recognition, pp. 1–4. IEEE, December 2008

    Google Scholar 

  12. Muniyandi, A.P., Rajeswari, R., Rajaram, R.: Network anomaly detection by cascading k-means clustering and C4. 5 decision tree algorithm. Procedia Eng. 30, 174–182 (2012)

    Article  Google Scholar 

  13. Kim, T.Y., Cho, S.B.: Web traffic anomaly detection using C-LSTM neural networks. Expert Syst. Appl. 106, 66–76 (2018)

    Article  Google Scholar 

  14. Arafailova, E., Beldiceanu, N., et al.: Global constraint catalog, volume ii, time-series constraints. arXiv preprint arXiv:1609.08925 (2016)

  15. Singh, S., Gupta, P.: Comparative study ID3, cart and C4. 5 decision tree algorithm: a survey. Int. J. Adv. Inf. Sci. Technol. (IJAIST) 27(27), 97–103 (2014)

    Google Scholar 

  16. Laptev, N., Amizadeh, S: A labeled anomaly detection dataset S5 Yahoo Research, v1. https://webscope.sandbox.yahoo.com/catalog.php?datatype=s&did=70

  17. Chen, C., Liaw, A., Breiman, L.: Using random forest to learn imbalanced data. Univ. Calif. Berkeley 110(1–12), 24 (2004)

    Google Scholar 

Download references

Acknowledgment

This PhD. was supported by the Management and Exploitation Service (SGE) of the Rangueil campus attached to the Rectorate of Toulouse and the research is made in the context of the neOCampus project (Paul Sabatier University, Toulouse). The authors thank the SGE for providing access to actual sensor data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ines Ben Kraiem .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ben Kraiem, I., Ghozzi, F., Peninou, A., Roman-Jimenez, G., Teste, O. (2020). Automatic Classification Rules for Anomaly Detection in Time-Series. In: Dalpiaz, F., Zdravkovic, J., Loucopoulos, P. (eds) Research Challenges in Information Science. RCIS 2020. Lecture Notes in Business Information Processing, vol 385. Springer, Cham. https://doi.org/10.1007/978-3-030-50316-1_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-50316-1_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-50315-4

  • Online ISBN: 978-3-030-50316-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics