Abstract
Process mining aims to provide insights into the actual processes based on event data. These data are widely available and often contain private information about individuals. Consider for example health-care information systems recording highly sensitive data related to diagnosis and treatment activities. Process mining should reveal insights in the form of annotated models, yet, at the same time, should not reveal sensitive information about individuals. In this paper, we discuss the challenges regarding directly applying existing well-known privacy-preserving techniques to event data. We introduce the TLKC-privacy model for process mining that provides privacy guarantees in terms of group-based anonymization. It extends and customizes the LKC-privacy model presented to deal with high-dimensional, sparse, and sequential trajectory data. Experiments on real-life event data demonstrate that our privacy model maintains a high utility for process discovery and performance analyses while preserving the privacy of the cases.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
- 2.
These results have been provided by Disco (https://fluxicon.com/disco/) with the sliders set to the maximal number of activities and the minimal paths.
References
van der Aalst, W.M.P.: Process Mining - Data Science in Action, Second edn. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49851-4
Aalst, W.M.P.: Responsible data science: using event data in a “people friendly” manner. In: Hammoudi, S., Maciaszek, L.A., Missikoff, M.M., Camp, O., Cordeiro, J. (eds.) ICEIS 2016. LNBIP, vol. 291, pp. 3–28. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-62386-3_1
Aggarwal, C.C., Philip, S.Y.: Privacy-Preserving Data Mining: Models and Algorithms. Springer, Heidelberg (2008). https://doi.org/10.1007/978-0-387-70992-5
Bonomi, L., Xiong, L.: A two-phase algorithm for mining sequential patterns with differential privacy. In: Proceedings of the 22nd ACM International Conference on Information & Knowledge Management. ACM (2013)
Dwork, C.: Differential privacy: a survey of results. In: Agrawal, M., Du, D., Duan, Z., Li, A. (eds.) TAMC 2008. LNCS, vol. 4978, pp. 1–19. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-79228-4_1
Fahrenkrog-Petersen, S.A., van der Aa, H., Weidlich, M.: PRETSA: event log sanitization for privacy-aware process discovery. In: International Conference on Process Mining, ICPM 2019, Aachen, Germany, 24–26 June 2019, pp. 1–8 (2019)
Fung, B.C., Wang, K., Chen, R., Yu, P.S.: Privacy-preserving data publishing: a survey of recent developments. ACM Comput. Surv. (Csur) 42(4), 1–53 (2010)
Fung, B.C., Wang, K., Fu, A.W.C., Philip, S.Y.: Introduction to Privacy-Preserving Data Publishing: Concepts and Techniques. Chapman and Hall/CRC, London (2010)
Kapoor, V., Poncelet, P., Trousset, F., Teisseire, M.: Privacy preserving sequential pattern mining in distributed databases. In: Proceedings of the 15th ACM International Conference on Information and Knowledge Management. ACM (2006)
Leemans, S.J.J., Fahland, D., van der Aalst, W.M.P.: Discovering block-structured process models from event logs containing infrequent behaviour. In: Business Process Management Workshops - BPM International Workshops, pp. 66–78 (2013)
Leemans, S.J.J., Fahland, D., van der Aalst, W.M.P.: Scalable process discovery and conformance checking. Softw. Syst. Model. 17(2), 599–631 (2016). https://doi.org/10.1007/s10270-016-0545-x
Li, N., Li, T., Venkatasubramanian, S.: t-closeness: privacy beyond k-anonymity and l-diversity. In: Proceedings of the 23rd International Conference on Data Engineering, ICDE 2007, The Marmara Hotel, Istanbul, Turkey, 15–20 April 2007
Mannhardt, F.: Sepsis cases-event log. Eindhoven University of Technology (2016)
Mannhardt, F., Koschmider, A., Baracaldo, N., Weidlich, M., Michael, J.: Privacy-preserving process mining - differential privacy for event logs. Bus. Inf. Syst. Eng. 61(5), 595–614 (2019)
Michael, J., Koschmider, A., Mannhardt, F., Baracaldo, N., Rumpe, B.: User-centered and privacy-driven process mining system design for IoT. In: Cappiello, C., Ruiz, M. (eds.) CAiSE 2019. LNCS, vol. 350, pp. 194–206. Springer, Heidelberg (2019). https://doi.org/10.1007/978-3-030-21297-1_17
Mohammed, N., Fung, B.C., Hung, P.C., Lee, C.k.: Anonymizing healthcare data: a case study on the blood transfusion service. In: Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2009, pp. 1285–1294. ACM, New York (2009)
Nergiz, M.E., Atzori, M., Saygin, Y.: Towards trajectory anonymization: a generalization-based approach. In: Proceedings of the SIGSPATIAL ACM GIS 2008 International Workshop on Security and Privacy in GIS and LBS (2008)
Rafiei, M., van der Aalst, W.M.P.: Mining roles from event logs while preserving privacy. In: Di Francescomarino, C., Dijkman, R., Zdun, U. (eds.) BPM 2019. LNBIP, vol. 362, pp. 676–689. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-37453-2_54
Rafiei, M., von Waldthausen, L., van der Aalst, W.M.P.: Ensuring confidentiality in process mining. In: Proceedings of the 8th International Symposium on Data-Driven Process Discovery and Analysis (SIMPDA 2018), Seville, Spain (2018)
Rafiei, M., von Waldthausen, L., van der Aalst, W.M.P.: Supporting confidentiality in process mining using abstraction and encryption. In: Ceravolo, P., van Keulen, M., Gómez-López, M.T. (eds.) SIMPDA 2018-2019. LNBIP, vol. 379, pp. 101–123. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-46633-6_6
Voss, W.G.: European union data privacy law reform: general data protection regulation, privacy shield, and the right to delisting. Bus. Lawyer 72(1), 221–234 (2016)
Acknowledgment
Funded under the Excellence Strategy of the Federal Government and the Länder. We also thank the Alexander von Humboldt (AvH) Stiftung for supporting our research.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Rafiei, M., Wagner, M., van der Aalst, W.M.P. (2020). TLKC-Privacy Model for Process Mining. In: Dalpiaz, F., Zdravkovic, J., Loucopoulos, P. (eds) Research Challenges in Information Science. RCIS 2020. Lecture Notes in Business Information Processing, vol 385. Springer, Cham. https://doi.org/10.1007/978-3-030-50316-1_24
Download citation
DOI: https://doi.org/10.1007/978-3-030-50316-1_24
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-50315-4
Online ISBN: 978-3-030-50316-1
eBook Packages: Computer ScienceComputer Science (R0)