Skip to main content

TLKC-Privacy Model for Process Mining

  • Conference paper
  • First Online:
Research Challenges in Information Science (RCIS 2020)

Abstract

Process mining aims to provide insights into the actual processes based on event data. These data are widely available and often contain private information about individuals. Consider for example health-care information systems recording highly sensitive data related to diagnosis and treatment activities. Process mining should reveal insights in the form of annotated models, yet, at the same time, should not reveal sensitive information about individuals. In this paper, we discuss the challenges regarding directly applying existing well-known privacy-preserving techniques to event data. We introduce the TLKC-privacy model for process mining that provides privacy guarantees in terms of group-based anonymization. It extends and customizes the LKC-privacy model presented to deal with high-dimensional, sparse, and sequential trajectory data. Experiments on real-life event data demonstrate that our privacy model maintains a high utility for process discovery and performance analyses while preserving the privacy of the cases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://github.com/Widderiru/TLKC-privacy/tree/master/home_version.

  2. 2.

    These results have been provided by Disco (https://fluxicon.com/disco/) with the sliders set to the maximal number of activities and the minimal paths.

References

  1. van der Aalst, W.M.P.: Process Mining - Data Science in Action, Second edn. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49851-4

  2. Aalst, W.M.P.: Responsible data science: using event data in a “people friendly” manner. In: Hammoudi, S., Maciaszek, L.A., Missikoff, M.M., Camp, O., Cordeiro, J. (eds.) ICEIS 2016. LNBIP, vol. 291, pp. 3–28. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-62386-3_1

    Chapter  Google Scholar 

  3. Aggarwal, C.C., Philip, S.Y.: Privacy-Preserving Data Mining: Models and Algorithms. Springer, Heidelberg (2008). https://doi.org/10.1007/978-0-387-70992-5

  4. Bonomi, L., Xiong, L.: A two-phase algorithm for mining sequential patterns with differential privacy. In: Proceedings of the 22nd ACM International Conference on Information & Knowledge Management. ACM (2013)

    Google Scholar 

  5. Dwork, C.: Differential privacy: a survey of results. In: Agrawal, M., Du, D., Duan, Z., Li, A. (eds.) TAMC 2008. LNCS, vol. 4978, pp. 1–19. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-79228-4_1

    Chapter  MATH  Google Scholar 

  6. Fahrenkrog-Petersen, S.A., van der Aa, H., Weidlich, M.: PRETSA: event log sanitization for privacy-aware process discovery. In: International Conference on Process Mining, ICPM 2019, Aachen, Germany, 24–26 June 2019, pp. 1–8 (2019)

    Google Scholar 

  7. Fung, B.C., Wang, K., Chen, R., Yu, P.S.: Privacy-preserving data publishing: a survey of recent developments. ACM Comput. Surv. (Csur) 42(4), 1–53 (2010)

    Google Scholar 

  8. Fung, B.C., Wang, K., Fu, A.W.C., Philip, S.Y.: Introduction to Privacy-Preserving Data Publishing: Concepts and Techniques. Chapman and Hall/CRC, London (2010)

    Google Scholar 

  9. Kapoor, V., Poncelet, P., Trousset, F., Teisseire, M.: Privacy preserving sequential pattern mining in distributed databases. In: Proceedings of the 15th ACM International Conference on Information and Knowledge Management. ACM (2006)

    Google Scholar 

  10. Leemans, S.J.J., Fahland, D., van der Aalst, W.M.P.: Discovering block-structured process models from event logs containing infrequent behaviour. In: Business Process Management Workshops - BPM International Workshops, pp. 66–78 (2013)

    Google Scholar 

  11. Leemans, S.J.J., Fahland, D., van der Aalst, W.M.P.: Scalable process discovery and conformance checking. Softw. Syst. Model. 17(2), 599–631 (2016). https://doi.org/10.1007/s10270-016-0545-x

    Article  Google Scholar 

  12. Li, N., Li, T., Venkatasubramanian, S.: t-closeness: privacy beyond k-anonymity and l-diversity. In: Proceedings of the 23rd International Conference on Data Engineering, ICDE 2007, The Marmara Hotel, Istanbul, Turkey, 15–20 April 2007

    Google Scholar 

  13. Mannhardt, F.: Sepsis cases-event log. Eindhoven University of Technology (2016)

    Google Scholar 

  14. Mannhardt, F., Koschmider, A., Baracaldo, N., Weidlich, M., Michael, J.: Privacy-preserving process mining - differential privacy for event logs. Bus. Inf. Syst. Eng. 61(5), 595–614 (2019)

    Article  Google Scholar 

  15. Michael, J., Koschmider, A., Mannhardt, F., Baracaldo, N., Rumpe, B.: User-centered and privacy-driven process mining system design for IoT. In: Cappiello, C., Ruiz, M. (eds.) CAiSE 2019. LNCS, vol. 350, pp. 194–206. Springer, Heidelberg (2019). https://doi.org/10.1007/978-3-030-21297-1_17

  16. Mohammed, N., Fung, B.C., Hung, P.C., Lee, C.k.: Anonymizing healthcare data: a case study on the blood transfusion service. In: Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2009, pp. 1285–1294. ACM, New York (2009)

    Google Scholar 

  17. Nergiz, M.E., Atzori, M., Saygin, Y.: Towards trajectory anonymization: a generalization-based approach. In: Proceedings of the SIGSPATIAL ACM GIS 2008 International Workshop on Security and Privacy in GIS and LBS (2008)

    Google Scholar 

  18. Rafiei, M., van der Aalst, W.M.P.: Mining roles from event logs while preserving privacy. In: Di Francescomarino, C., Dijkman, R., Zdun, U. (eds.) BPM 2019. LNBIP, vol. 362, pp. 676–689. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-37453-2_54

    Chapter  Google Scholar 

  19. Rafiei, M., von Waldthausen, L., van der Aalst, W.M.P.: Ensuring confidentiality in process mining. In: Proceedings of the 8th International Symposium on Data-Driven Process Discovery and Analysis (SIMPDA 2018), Seville, Spain (2018)

    Google Scholar 

  20. Rafiei, M., von Waldthausen, L., van der Aalst, W.M.P.: Supporting confidentiality in process mining using abstraction and encryption. In: Ceravolo, P., van Keulen, M., Gómez-López, M.T. (eds.) SIMPDA 2018-2019. LNBIP, vol. 379, pp. 101–123. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-46633-6_6

    Chapter  Google Scholar 

  21. Voss, W.G.: European union data privacy law reform: general data protection regulation, privacy shield, and the right to delisting. Bus. Lawyer 72(1), 221–234 (2016)

    Google Scholar 

Download references

Acknowledgment

Funded under the Excellence Strategy of the Federal Government and the Länder. We also thank the Alexander von Humboldt (AvH) Stiftung for supporting our research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Majid Rafiei .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rafiei, M., Wagner, M., van der Aalst, W.M.P. (2020). TLKC-Privacy Model for Process Mining. In: Dalpiaz, F., Zdravkovic, J., Loucopoulos, P. (eds) Research Challenges in Information Science. RCIS 2020. Lecture Notes in Business Information Processing, vol 385. Springer, Cham. https://doi.org/10.1007/978-3-030-50316-1_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-50316-1_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-50315-4

  • Online ISBN: 978-3-030-50316-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics