Skip to main content

Privacy Preserving Real-Time Video Stream Change Detection Based on the Orthogonal Tensor Decomposition Models

  • Conference paper
  • First Online:
Research Challenges in Information Science (RCIS 2020)

Part of the book series: Lecture Notes in Business Information Processing ((LNBIP,volume 385))

Included in the following conference series:

  • 2248 Accesses

Abstract

In this paper the video change detection method that allows for data privacy protection is proposed. Signal change detection is based on the tensor models constructed in the orthogonal tensor subspaces. Tensor methods allow for processing of any kind of multi-dimensional signals since computation of special features is not required. The proposed signal encoding method makes that person identification in the processed signal is very difficult or impossible for the unauthorized personnel. It is demonstrated that despite the input being distorted for encryption, the proposed tensor based method can still correctly identify video shots in real-time. Compared with the non-distorted signals, the obtained accuracy is only slightly lower, at the same time providing data privacy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Aja-Fernández, S., de Luis Garcia, R., Tao, D., Li, X.: Tensors in Image Processing and Computer Vision. Springer, Heidelberg (2009). https://doi.org/10.1007/978-1-84882-299-3

  2. Asghar, M.N., Hussain, F., Manton, R.: Video indexing: a survey. Int. J. Comput. Inf. Technol. 03(01), 148–169 (2014)

    Google Scholar 

  3. Baaziz, N., Lolo, N., Padilla, O., Petngang, F.: Security and privacy protection for automated video surveillance. In: 2007 IEEE International Symposium on Signal Processing and Information Technology, Giza, pp. 17–22 (2007)

    Google Scholar 

  4. Boult, T.E.: PICO: privacy through invertible cryptographic obscuration. In: Computer Vision for Interactive and Intelligent Environment (CVIIE 2005), USA, pp. 27–38 (2005)

    Google Scholar 

  5. Çiftçi, S., Akyüz, A.O., Ebrahimi, T.: A reliable and reversible image privacy protection based on false colors. IEEE Trans. Multimedia 20(1), 68–81 (2018)

    Article  Google Scholar 

  6. de Avila, S.E.F., Lopes, A.P.B., Luz da Jr., A., Araújo, A.A.: VSUMM: a mechanism designed to produce static video summaries and a novel evaluation method. Pattern Recogn. Lett. 32, 56–68 (2011)

    Google Scholar 

  7. Chu, K.-Y., Kuo Y.-H., Hsu, W.H.: Real-time privacy-preserving moving object detection in the cloud. In: Proceedings of the 21st ACM International Conference on Multimedia, Association for Computing Machinery, NY, USA, pp. 597–600 (2013)

    Google Scholar 

  8. Cyganek, B.: Object Detection and Recognition in Digital Images: Theory and Practice. Wiley, Hoboken (2013)

    Google Scholar 

  9. Cyganek, B.: Hybrid ensemble of classifiers for logo and trademark symbols recognition. Soft. Comput. 19(12), 3413–3430 (2015)

    Article  Google Scholar 

  10. Cyganek, B.: Thumbnail tensor - a method for multidimensional data streams clustering with an efficient tensor subspace model in the scale-space. Sensors 19, 4088 (2019)

    Article  Google Scholar 

  11. DeRecLib. http://www.wiley.com/go/cyganekobject. Accessed 21 Mar 2020

  12. Domingo-Ferrer, J., Farràs, O., Ribes-González, J., Sánchez, D.: Privacy-preserving cloud computing on sensitive data: a survey of methods, products and challenges. Comput. Commun. 140–141, 38–60 (2019)

    Article  Google Scholar 

  13. Du, L., Zhang, W., Fu, H., Ren, W., Zhang, X.. An efficient privacy protection scheme for data security in video surveillance. J. Vis. Commun. Image Repr. 59 (2019)

    Google Scholar 

  14. Del Fabro, M., Böszörmenyi, L.: State-of-the-art and future challenges in video scene detection: a survey. Multimedia Syst. 19(5), 427–454 (2013)

    Article  Google Scholar 

  15. Grabek, J., Cyganek, B.: Speckle noise filtering in side-scan sonar images based on the Tucker tensor decomposition. Sensors 19, 2903 (2019)

    Article  Google Scholar 

  16. https://open-video.org/

  17. https://sites.google.com/site/vsummsite/home

  18. https://sites.google.com/site/vscansite/home

  19. Korshunov, P., Ebrahimi, T.: Using warping for privacy protection in video surveillance. In: 18th International Conference on Digital Signal Processing (DSP), Fira, pp. 1–6 (2013)

    Google Scholar 

  20. de Lathauwer, L., de Moor, B., Vandewalle, J.: A multilinear singular value decomposition. SIAM J. Matrix Anal. Appl. 21(4), 1253–1278 (2000)

    Article  MathSciNet  Google Scholar 

  21. Mahmoud, K.M., Ismail, M.A., Ghanem, N.M.: VSCAN: an enhanced video summarization using density-based spatial clustering. In: Petrosino, A. (ed.) ICIAP 2013. LNCS, vol. 8156, pp. 733–742. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-41181-6_74

    Chapter  Google Scholar 

  22. Ou, S.-H., Lee, C.-H., Somayazulu, V.S., Chen, Y-K., Chien S-Y.: On-line multi-view video summarization for wireless video sensor network. IEEE J. Sel. Topics Sig. Process. 9(1), 165–179 (2015)

    Google Scholar 

  23. Padilla-Lopez, J.R., Chaaraoui, A.A., Florez-Revuelta, F.: Visual privacy protection methods: a survey. Expert Syst. Appl. 42, 4177–4195 (2016)

    Google Scholar 

  24. Qayyum, H., Majid, M., Haq, E., Anwar, S.: Generation of personalized video summaries by detecting viewer’s emotion using electroencephalography. J. Vis. Com. Image 65, 102672 (2019)

    Google Scholar 

Download references

Acknowledgement

This work was supported by the Polish National Science Center NCN under the grant no. 2016/21/B/ST6/01461.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bogusław Cyganek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cyganek, B. (2020). Privacy Preserving Real-Time Video Stream Change Detection Based on the Orthogonal Tensor Decomposition Models. In: Dalpiaz, F., Zdravkovic, J., Loucopoulos, P. (eds) Research Challenges in Information Science. RCIS 2020. Lecture Notes in Business Information Processing, vol 385. Springer, Cham. https://doi.org/10.1007/978-3-030-50316-1_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-50316-1_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-50315-4

  • Online ISBN: 978-3-030-50316-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics