Skip to main content

Cross-Scenario Performance Modelling for Big Data Ecosystems

  • Conference paper
  • First Online:
Artificial Intelligence in HCI (HCII 2020)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 12217))

Included in the following conference series:

  • 2516 Accesses

Abstract

Performance prediction is an essential aspect of several critical system design decisions, such as workload scheduling and resource planning. However, developing a model with higher prediction accuracy is a challenging task in big data systems due to the stack complexity and environmental heterogeneity. Workload modelling aims to simplify the connection between workloads factors and performance testing. Most of the workload models rely on a single scenario under test (SUT) method, where the trained and the evaluated data have the same distribution. However, a single SUT is not the ideal modelling method for big data workloads, as SUTs change frequently. Big data systems have a considerable amount of possible test scenarios that are generated from changing one or more elements in the testing environment, such as changing benchmarks, software versions, or cloud service types. To address this issue, we propose a cross-Scenario workload modelling method that aims to improve the workloads’ performance classification accuracy. The proposed approach adopts the Transfer Learning concept for reusing models cross different but related scenarios. In this work, we evaluate the proposed approach on multi real-world scenarios in Hadoop which is an example of big data system. The empirical results showed that the proposed approach is more accurate than SUT method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chen, Y.: We don’t know enough to make a big data benchmark suite-an academia-industry view. In: Proceedings of the WBDB, vol. 74 (2012)

    Google Scholar 

  2. Pan, S.J., Yang, Q.: A survey on transfer learning. IEEE Trans. Knowl. Data Eng. 22(10), 1345–1359 (2009)

    Article  Google Scholar 

  3. Yang, H., Luan, Z., Li, W., Qian, D.: MapReduce workload modeling with statistical approach. J. Grid Comput. 10(2), 279–310 (2012)

    Article  Google Scholar 

  4. Herodotou, H., Babu, S.: Profiling, what-if analysis, and cost-based optimization of mapreduce programs. Proc. VLDB Endow. 4(11), 1111–1122 (2011)

    Article  Google Scholar 

  5. Chen, C.-C., Hasio, Y.-T., Lin, C.-Y., Lu, S., Lu, H.-T., Chou, J.: Using deep learning to predict and optimize hadoop data analytic service in a cloud platform. In: Proceedings of the 15th International Conference on Dependable, Autonomic and Secure Computing (DASC), 15th International Conference on Pervasive Intelligence and Computing (PiCom), 3rd International Conference on Big Data Intelligence and Computing (DataCom) and Cyber Science and Technology Congress (CyberSciTech), pp. 909–916. IEEE (2017)

    Google Scholar 

  6. Chen, Y., Alspaugh, S., Katz, R.: Interactive analytical processing in big data systems: a cross-industry study of mapreduce workloads. Proc. VLDB Endow. 5(12), 1802–1813 (2012)

    Article  Google Scholar 

  7. Gouasmi, T., Louati, W., Kacem, A.H.: Optimal MapReduce job scheduling algorithm across cloud federation. In: Proceedings of the International Conference on Parallel and Distributed Processing Techniques and Applications (PDPTA), pp. 88–93 (2017)

    Google Scholar 

  8. Feitelson, D.G.: Workload modeling for performance evaluation. In: Calzarossa, M.C., Tucci, S. (eds.) Performance 2002. LNCS, vol. 2459, pp. 114–141. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45798-4_6

    Chapter  MATH  Google Scholar 

  9. Prats, D.B., Berral, J.L., Carrera, D.: Automatic generation of workload profiles using unsupervised learning pipelines. IEEE Trans. Netw. Serv. Manage. 15(1), 142–155 (2017)

    Article  Google Scholar 

  10. Ganapathi, A., Chen, Y., Fox, A., Katz, R., Patterson, D.: Statistics-driven workload modeling for the cloud. In: Proceedings of the 26th International Conference on Data Engineering Workshops (ICDEW), pp. 87–92. IEEE (2010)

    Google Scholar 

  11. Vavilapalli, V.K., et al.: Apache hadoop yarn: yet another resource negotiator. In: Proceedings of the 4th annual Symposium on Cloud Computing, p. 5. ACM (2013)

    Google Scholar 

  12. Apache Spark\(^{\text{TM}}\) - unified analytics engine for big data. https://spark.apache.org/

  13. Apache Storm\(^{\text{ TM }}\) - distributed dealtime computation system. https://storm.apache.org/

  14. Apache Hadoop. https://hadoop.apache.org/docs/r2.9.0/

  15. Zhu,Y., Liu, J., Guo, M., Ma, W., Bao, Y.: Acts in need: automatic configuration tuning with scalability guarantees. In: Proceedings of the 8th Asia-Pacific Workshop on Systems, pp. 1–8. ACM (2017)

    Google Scholar 

  16. Wang, K., Lin, X., Tang, W.: Predator–an experience guided configuration optimizer for Hadoop MapReduce. In: Proceedings of the 4th International Conference on Cloud Computing Technology and Science (CloudCom), pp. 419–426. IEEE (2012)

    Google Scholar 

  17. Berral, J.L., Poggi, N., Carrera, D., Call, A., Reinauer, R., Green, D.: Aloja: a framework for benchmarking and predictive analytics in hadoop deployments. IEEE Trans. Emerg. Top. Comput. 5(4), 480–493 (2015)

    Article  Google Scholar 

  18. Conradi, R., Westfechtel, B.: Version models for software configuration management. ACM Comput. Surv. (CSUR) 30(2), 232–282 (1998)

    Article  Google Scholar 

  19. Sharma, M.: Database environmental change impact prediction for human-driven tuning in real-time (DECIPHER), Ph.D. dissertation, Dakota State University (2013)

    Google Scholar 

  20. Mieścicki, J., Daszczuk, W.B.: Proposed benchmarks for PRT networks simulation, arXiv preprint arXiv:1710.05754 (2017)

  21. Han, R., John, L.K., Zhan, J.: Benchmarking big data systems: a review. IEEE Trans. Serv. Comput. 11(3), 580–597 (2018)

    Article  Google Scholar 

  22. Han, R., et al.: BigDataBench-MT: a benchmark tool for generating realistic mixed data center workloads. In: Zhan, J., Han, R., Zicari, R.V. (eds.) BPOE 2015. LNCS, vol. 9495, pp. 10–21. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-29006-5_2

    Chapter  Google Scholar 

  23. Huang, S., Huang, J., Dai, J., Xie, T., Huang, B.: The HiBench benchmark suite: characterization of the mapreduce-based data analysis. In: Proceedings of the 26th International Conference on Data Engineering Workshops (ICDEW), pp. 41–51. IEEE (2010)

    Google Scholar 

  24. TPC Benchmarks. http://www.tpc.org/information/benchmarks.asp

  25. Schmidt, D.C.: Model-driven engineering. Comput.-IEEE Comput. Soc. 39(2), 25 (2006)

    Article  Google Scholar 

  26. Harrison, P.G., Harrison, S., Patel, N.M., Zertal, S.: Storage workload modeling by hidden Markov models: application to flash memory. Perform. Eval. J. (PEVA) 69(1), 17–40 (2012)

    Article  Google Scholar 

  27. Yang, Z., Awasthi, M., Ghosh, M., Bhimani, J., Mi, N.: I/O workload management for all-flash datacenter storage systems based on total cost of ownership. IEEE Trans. Big Data (2018)

    Google Scholar 

  28. Tarsa, S.J., Kumar, A.P., Kung, H.: Workload prediction for adaptive power scaling using deep learning. In: Proceedings of the International Conference on IC Design & Technology, pp. 1–5. IEEE (201)

    Google Scholar 

  29. Yang, H., Luan, Z., Li, W., Qian, D., Guan, G.: Statistics-based workload modeling for mapreduce. In: Proceedings of the 26th International Parallel and Distributed Processing Symposium Workshops & Ph.D. Forum, pp. 2043–2051. IEEE (2012)

    Google Scholar 

  30. Lama, P., Zhou, X.: Aroma: automated resource allocation and configuration of mapreduce environment in the cloud. In: Proceedings of the 9th International Conference on Autonomic Computing, pp. 63–72 (2012)

    Google Scholar 

  31. Chen, C.-O., Zhuo, Y.-Q., Yeh, C.-C., Lin, C.-M., Liao, S.-W.: Machine learning-based configuration parameter tuning on hadoop system. In: Proceedings, IEEE International Congress on Big Data, IEEE 2015, pp. 386–392 (2015)

    Google Scholar 

  32. Khoshkbarforoushha, A., Ranjan, R., Gaire, R., Abbasnejad, E., Wang, L., Zomaya, A.Y.: Distribution based workload modelling of continuous queries in clouds. IEEE Trans. Emerg. Top. Comput. 5(1), 120–133 (2016)

    Article  Google Scholar 

  33. Iqbal, W., Berral, J.L., Erradi, A., Carrera, D.: Adaptive prediction models for data center resources utilization estimation. IEEE Trans. Netw. Serv. Manage. 16(4), 1681–1693 (2019)

    Article  Google Scholar 

  34. Zhu, Q., Agrawal, G.: Resource provisioning with budget constraints for adaptive applications in cloud environments. IEEE Trans. Serv. Comput. 5(4), 497–511 (2012)

    Article  Google Scholar 

  35. Hsu, C.-J., Nair, V., Menzies, T., Freeh, V.W.: Scout: An experienced guide to find the best cloud configuration, arXiv preprint arXiv:1803.01296 (2018)

  36. Ma, Y., Luo, G., Zeng, X., Chen, A.: Transfer learning for cross-company software defect prediction. Inf. Softw. Technol. 54(3), 248–256 (2012)

    Article  Google Scholar 

  37. Kocaguneli, E., Menzies, T., Mendes, E.: Transfer learning in effort estimation. Empirical Softw. Eng. 20(3), 813–843 (2014). https://doi.org/10.1007/s10664-014-9300-5

    Article  Google Scholar 

  38. Jamshidi, P., Velez, M., Kästner, C., Siegmund, N., Kawthekar, P.: Transfer learning for improving model predictions in highly configurable software. In: Proceedings of the 12th International Symposium on Software Engineering for Adaptive and Self-managing Systems, pp. 31–41. IEEE (2017)

    Google Scholar 

  39. Valov, P., Petkovich, J.-C., Guo, J., Fischmeister, S., Czarnecki, K.: Transferring performance prediction models across different hardware platforms. In: Proceedings of the 8th ACM/SPEC on International Conference on Performance Engineering, pp. 39–50 (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Miri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Alsayoud, F., Miri, A. (2020). Cross-Scenario Performance Modelling for Big Data Ecosystems. In: Degen, H., Reinerman-Jones, L. (eds) Artificial Intelligence in HCI. HCII 2020. Lecture Notes in Computer Science(), vol 12217. Springer, Cham. https://doi.org/10.1007/978-3-030-50334-5_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-50334-5_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-50333-8

  • Online ISBN: 978-3-030-50334-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics