Skip to main content

Prediction-Based Uncertainty Estimation for Adaptive Crowd Navigation

  • Conference paper
  • First Online:
Artificial Intelligence in HCI (HCII 2020)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 12217))

Included in the following conference series:

Abstract

Fast, collision-free motion through human environments remains a challenging problem for robotic systems. In these situations, the robot’s ability to reason about its future motion and other agents is often severely limited. By contrast, biological systems routinely make decisions by taking into consideration what might exist in the future based on prior experience. In this paper, we present an approach that provides robotic systems the ability to make future predictions of the environment. We evaluate several deep network architectures, including purely generative and adversarial models for map prediction. We further extend this approach to predict future pedestrian motion. We show that prediction plays a key role in enabling an adaptive, risk-sensitive control policy. Our algorithms are able to generate future maps with a structural similarity index metric up to 0.899 compared to the ground truth map. Further, our adaptive crowd navigation algorithm is able to reduce the number of collisions by 43% in the presence of novel pedestrian motion not seen during training.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Katyal, K., Hager, G.D., Huang, C.-M.: Intent-aware pedestrian prediction for adaptive crowd navigation. In: 2020 International Conference on Robotics and Automation (ICRA) (2020)

    Google Scholar 

  2. Katyal, K., Popek, K., Paxton, C., Burlina, P., Hager, G.D.: Uncertainty-aware occupancy map prediction using generative networks for robot navigation. In: 2019 International Conference on Robotics and Automation (ICRA), pp. 5453–5459, May 2019

    Google Scholar 

  3. Finn, C., Levine, S.: Deep visual foresight for planning robot motion. In: 2017 IEEE International Conference on Robotics and Automation (ICRA), pp. 2786–2793. IEEE (2017)

    Google Scholar 

  4. Levine, S., Pastor, P., Krizhevsky, A., Quillen, D.: Learning hand-eye coordination for robotic grasping with deep learning and large-scale data collection. arXiv preprint arXiv:1603.02199 (2016)

  5. Oh, J., Guo, X., Lee, H., Lewis, R.L., Singh, S.: Action-conditional video prediction using deep networks in Atari games. In: Cortes, C., Lawrence, N.D., Lee, D.D., Sugiyama, M., Garnett, R., Garnett, R. (eds.) Advances in Neural Information Processing Systems 28, pp. 2845–2853. Curran Associates Inc. (2015)

    Google Scholar 

  6. Ulyanov, D., Vedaldi, A., Lempitsky, V.S.: Deep image prior. CoRR, vol. abs/1711.10925 (2017). http://arxiv.org/abs/1711.10925

  7. Goodfellow, I., et al.: Generative adversarial nets. In: Ghahramani, Z., Welling, M., Cortes, C., Lawrence, N.D., Weinberger, K.Q. (eds.) Advances in Neural Information Processing Systems 27, pp. 2672–2680. Curran Associates Inc. (2014). http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf

  8. Isola, P., Zhu, J.-Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: CVPR (2017)

    Google Scholar 

  9. Tamar, A., Wu, Y., Thomas, G., Levine, S., Abbeel, P.: Value iteration networks. In: Advances in Neural Information Processing Systems, pp. 2154–2162 (2016)

    Google Scholar 

  10. Tai, L., Paolo, G., Liu, M.: Virtual-to-real deep reinforcement learning: continuous control of mobile robots for mapless navigation. CoRR, vol. abs/1703.00420 (2017). http://arxiv.org/abs/1703.00420

  11. Kahn, G., Villaflor, A., Ding, B., Abbeel, P., Levine, S.: Self-supervised deep reinforcement learning with generalized computation graphs for robot navigation. CoRR, vol. abs/1709.10489 (2017). http://arxiv.org/abs/1709.10489

  12. Kruse, T., Pandey, A.K., Alami, R., Kirsch, A.: Human-aware robot navigation: a survey. Robot. Auton. Syst. 61(12), 1726–1743 (2013)

    Article  Google Scholar 

  13. van den Berg, J.P., Lin, M.C., Manocha, D.: Reciprocal velocity obstacles for real-time multi-agent navigation. In: 2008 IEEE International Conference on Robotics and Automation, pp. 1928–1935 (2008)

    Google Scholar 

  14. van den Berg, J., Guy, S.J., Lin, M., Manocha, D.: Reciprocal n-body collision avoidance. In: Pradalier, C., Siegwart, R., Hirzinger, G. (eds.) Robotics Research. STAR, vol. 70, pp. 3–19. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19457-3_1

    Chapter  Google Scholar 

  15. Phillips, M., Likhachev, M.: SIPP: safe interval path planning for dynamic environments, pp. 5628–5635, June 2011

    Google Scholar 

  16. Aoude, G.S., Luders, B.D., Joseph, J.M., Roy, N., How, J.P.: Probabilistically safe motion planning to avoid dynamic obstacles with uncertain motion patterns. Auton. Robots 35(1), 51–76 (2013). https://doi.org/10.1007/s10514-013-9334-3

    Article  Google Scholar 

  17. Kretzschmar, H., Spies, M., Sprunk, C., Burgard, W.: Socially compliant mobile robot navigation via inverse reinforcement learning. Int. J. Robot. Res. 35(11), 1289–1307 (2016). https://doi.org/10.1177/0278364915619772

    Article  Google Scholar 

  18. Everett, M., Chen, Y.F., How, J.P.: Motion planning among dynamic, decision-making agents with deep reinforcement learning. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid, Spain, September 2018. https://arxiv.org/pdf/1805.01956.pdf

  19. Chen, C., Liu, Y., Kreiss, S., Alahi, A.: Crowd-robot interaction: crowd-aware robot navigation with attention-based deep reinforcement learning (2018)

    Google Scholar 

  20. Kahn, G., Villaflor, A., Pong, V., Abbeel, P., Levine, S.: Uncertainty-aware reinforcement learning for collision avoidance. arXiv, vol. abs/1702.01182 (2017)

    Google Scholar 

  21. Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. CoRR, vol. abs/1505.04597 (2015). http://arxiv.org/abs/1505.04597

  22. Johnson, J., Alahi, A., Li, F.: Perceptual losses for real-time style transfer and super-resolution. CoRR, vol. abs/1603.08155 (2016). http://arxiv.org/abs/1603.08155

  23. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. CoRR, vol. abs/1512.03385 (2015). http://arxiv.org/abs/1512.03385

  24. Zhu, J., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. CoRR, vol. abs/1703.10593 (2017). http://arxiv.org/abs/1703.10593

  25. Hornung, A., Wurm, K.M., Bennewitz, M., Stachniss, C., Burgard, W.: OctoMap: an efficient probabilistic 3D mapping framework based on octrees. Auton. Robots (2013). http://octomap.github.com

  26. Min, P.: Binvox (2004–2017). http://www.patrickmin.com/binvox. Accessed 20 Feb 2017

  27. Nooruddin, F.S., Turk, G.: Simplification and repair of polygonal models using volumetric techniques. IEEE Trans. Vis. Comput. Graph. 9(2), 191–205 (2003)

    Article  Google Scholar 

  28. Paszke, A., et al.: Automatic Differentiation in PyTorch (2017)

    Google Scholar 

  29. Rupprecht, C., Laina, I., Baust, M., Tombari, F., Hager, G.D., Navab, N.: Learning in an uncertain world: representing ambiguity through multiple hypotheses. CoRR, vol. abs/1612.00197 (2016). http://arxiv.org/abs/1612.00197

  30. Hess, W., Kohler, D., Rapp, H., Andor, D.: Real-time loop closure in 2D LIDAR SLAM. In: IEEE International Conference on Robotics and Automation (ICRA) 2016, pp. 1271–1278 (2016)

    Google Scholar 

  31. Yamauchi, B.: A frontier-based approach for autonomous exploration. In: Proceedings 1997 IEEE International Symposium on Computational Intelligence in Robotics and Automation, CIRA 1997. ‘Towards New Computational Principles for Robotics and Automation’, pp. 146–151, July 1997

    Google Scholar 

  32. Bai, S., Wang, J., Chen, F., Englot, B.: Information-theoretic exploration with Bayesian optimization. In: 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 1816–1822. IEEE (2016)

    Google Scholar 

  33. Bai, S., Wang, J., Doherty, K., Englot, B.: Inference-enabled information-theoretic exploration of continuous action spaces. In: International Symposium of Robotics Research (2015)

    Google Scholar 

  34. Wirth, S., Pellenz, J.: Exploration transform: a stable exploring algorithm for robots in rescue environments. In: IEEE International Workshop on Safety, Security and Rescue Robotics: SSRR 2007, pp. 1–5. IEEE (2007)

    Google Scholar 

  35. Brockman, G., et al.: OpenAI Gym. CoRR, vol. abs/1606.01540 (2016). http://arxiv.org/abs/1606.01540

  36. Chen, Y.F., Liu, M., Everett, M., How, J.: Decentralized non-communicating multiagent collision avoidance with deep reinforcement learning, pp. 285–292, May 2017

    Google Scholar 

  37. Fan, R.-E., Chang, K.-W., Hsieh, C.-J., Wang, X.-R., Lin, C.-J.: LIBLINEAR: a library for large linear classification. J. Mach. Learn. Res. 9, 1871–1874 (2008). http://dl.acm.org/citation.cfm?id=1390681.1442794

  38. Gupta, A., Johnson, J., Fei-Fei, L., Savarese, S., Alahi, A.: Social GAN: socially acceptable trajectories with generative adversarial networks. CoRR, vol. abs/1803.10892 (2018). http://arxiv.org/abs/1803.10892

  39. Efron, B.: The Jackknife, The Bootstrap and Other Resampling Plans. ser. CBMS-NSF Regional Conference Series in Applied Mathematics. SIAM, Philadelphia (1982). Lectures Given at Bowling Green State Univ., June 1980. https://cds.cern.ch/record/98913

  40. Gal, Y., Ghahramani, Z.: Dropout as a Bayesian approximation: representing model uncertainty in deep learning. In: Balcan, M.F., Weinberger, K.Q. (eds.) Proceedings of the 33rd International Conference on Machine Learning, ser. Proceedings of Machine Learning Research, PMLR, New York, NY, USA, 20–22 June 2016, vol. 48, pp. 1050–1059 (2016). http://proceedings.mlr.press/v48/gal16.html

  41. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15(1), 1929–1958 (2014). http://dl.acm.org/citation.cfm?id=2627435.2670313

Download references

Acknowledgements

This work is partially supported by the Johns Hopkins University (JHU) Institute for Assured Autonomy (IAA) Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kapil D. Katyal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Katyal, K.D., Popek, K., Hager, G.D., Wang, IJ., Huang, CM. (2020). Prediction-Based Uncertainty Estimation for Adaptive Crowd Navigation. In: Degen, H., Reinerman-Jones, L. (eds) Artificial Intelligence in HCI. HCII 2020. Lecture Notes in Computer Science(), vol 12217. Springer, Cham. https://doi.org/10.1007/978-3-030-50334-5_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-50334-5_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-50333-8

  • Online ISBN: 978-3-030-50334-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics