Abstract
Object detection in densely packed scenes is a new area where standard object detectors fail to train well [6]. Dense object detectors like RetinaNet [7] trained on large and dense datasets show great performance. We train a standard object detector on a small, normally packed dataset with data augmentation techniques. This dataset is 265 times smaller than the standard dataset, in terms of number of annotations. This low data baseline achieves satisfactory results (mAP = 0.56) at standard IoU of 0.5. We also create a varied benchmark for generic SKU product detection by providing full annotations for multiple public datasets. It can be accessed at this URL. We hope that this benchmark helps in building robust detectors that perform reliably across different settings in the wild.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
- 2.
Note that Full Approach is trained on SKU110K-Train while LDB300 is trained on our low shot dataset.
References
Buslaev, A.V., Parinov, A., Khvedchenya, E., Iglovikov, V.I., Kalinin, A.A.: Albumentations: fast and flexible image augmentations. CoRR abs/1809.06839 (2018). http://arxiv.org/abs/1809.06839
Follmann, P., Böttger, T., Härtinger, P., König, R., Ulrich, M.: Mvtec D2S: densely segmented supermarket dataset. CoRR abs/1804.08292 (2018). http://arxiv.org/abs/1804.08292
Fuchs, K., Grundmann, T., Fleisch, E.: Towards identification of packaged products via computer vision: convolutional neural networks for object detection and image classification in retail environments. In: Proceedings of the 9th International Conference on the Internet of Things, IoT 2019, pp. 26:1–26:8. ACM, New York (2019). https://doi.org/10.1145/3365871.3365899
Geng, W., et al.: Fine-grained grocery product recognition by one-shot learning. In: Proceedings of the 26th ACM International Conference on Multimedia, MM 2018, pp. 1706–1714. ACM, New York (2018). https://doi.org/10.1145/3240508.3240522
George, M., Floerkemeier, C.: Recognizing products: a per-exemplar multi-label image classification approach. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8690, pp. 440–455. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10605-2_29
Goldman, E., et al.: Precise detection in densely packed scenes. CoRR abs/1904.00853 (2019). http://arxiv.org/abs/1904.00853
Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollar, P.: Focal loss for dense object detection. In: 2017 IEEE International Conference on Computer Vision (ICCV), October 2017. https://doi.org/10.1109/iccv.2017.324
Lin, T., et al.: Microsoft COCO: common objects in context. CoRR abs/1405.0312 (2014). http://arxiv.org/abs/1405.0312
Merler, M., Galleguillos, C., Belongie, S.: Recognizing groceries in situ using in vitro training data. In: 2007 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8, June 2007. https://doi.org/10.1109/CVPR.2007.383486
Ren, S., He, K., Girshick, R.B., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. CoRR abs/1506.01497 (2015). http://arxiv.org/abs/1506.01497
Shmelkov, K., Schmid, C., Alahari, K.: Incremental learning of object detectors without catastrophic forgetting. CoRR abs/1708.06977 (2017). http://arxiv.org/abs/1708.06977
Singh, B., Davis, L.S.: An analysis of scale invariance in object detection - SNIP. CoRR abs/1711.08189 (2017). http://arxiv.org/abs/1711.08189
Tonioni, A., di Stefano, L.: Product recognition in store shelves as a sub-graph isomorphism problem. CoRR abs/1707.08378 (2017). http://arxiv.org/abs/1707.08378
Varol, G., Salih, R.: Toward retail product recognition on grocery shelves, p. 944309 (2015). https://doi.org/10.1117/12.2179127
Wei, X., Cui, Q., Yang, L., Wang, P., Liu, L.: RPC: a large-scale retail product checkout dataset. CoRR abs/1901.07249 (2019). http://arxiv.org/abs/1901.07249
Zhang, Y., Wang, L., Hartley, R., Li, H.: Where’s the weet-bix? In: Yagi, Y., Kang, S.B., Kweon, I.S., Zha, H. (eds.) ACCV 2007. LNCS, vol. 4843, pp. 800–810. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-76386-4_76
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Varadarajan, S., Kant, S., Srivastava, M.M. (2020). Benchmark for Generic Product Detection: A Low Data Baseline for Dense Object Detection. In: Campilho, A., Karray, F., Wang, Z. (eds) Image Analysis and Recognition. ICIAR 2020. Lecture Notes in Computer Science(), vol 12131. Springer, Cham. https://doi.org/10.1007/978-3-030-50347-5_3
Download citation
DOI: https://doi.org/10.1007/978-3-030-50347-5_3
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-50346-8
Online ISBN: 978-3-030-50347-5
eBook Packages: Computer ScienceComputer Science (R0)