Skip to main content

Automatic Stereo Disparity Search Range Detection on Parallel Computing Architectures

  • Conference paper
  • First Online:
Image Analysis and Recognition (ICIAR 2020)

Abstract

From the earliest to the state-of-the-art algorithms, stereo depth estimation techniques often require a disparity search range (DSR) value to be chosen manually. However, the optimal DSR varies from one scene to another making the results depend on the operator input and operator having to optimize the configuration by using trial-and-error. In this paper we present a novel technique suitable for parallel computing architectures which detects the optimum DSR for a given scene without requiring operator input or prior knowledge of the scene. Experiments on stereo images from Middlebury, KITTI and Sceneflow bench-mark datasets indicate that our technique can automatically extract a suitable DSR value from different scenes, which leads to better consistency in matching. The technique presented here can be used with existing stereo algorithms to limit the size of the cost volume as it is being built (without requiring pre-processing or operator input). A CUDA based implementation of our method can deliver real-time performance on consumer grade GPUs at high frame rates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zhang, F., Prisacariu, V., Yang, R., Torr, P.H.: GA-net: guided aggregation net for end-to-end stereo matching. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 185–194 (2019)

    Google Scholar 

  2. Chang, J.R., Chen, Y.S.: Pyramid stereo matching network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5410–5418 (2018)

    Google Scholar 

  3. Cheng, X., Wang, P., Yang, R.: Learning depth with convolutional spatial propagation network. In: IEEE Transactions on Pattern Analysis and Machine Intelligence (2019)

    Google Scholar 

  4. Geiger, A., Roser, M., Urtasun, R.: Efficient large-scale stereo matching. In: Kimmel, R., Klette, R., Sugimoto, A. (eds.) ACCV 2010. LNCS, vol. 6492, pp. 25–38. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19315-6_3

    Chapter  Google Scholar 

  5. Zhang, Z., Shan, Y.: A progressive scheme for stereo matching. In: Pollefeys, M., Van Gool, L., Zisserman, A., Fitzgibbon, A. (eds.) SMILE 2000. LNCS, vol. 2018, pp. 68–85. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45296-6_5

    Chapter  Google Scholar 

  6. Kostková, J., Sara, R.: Automatic disparity search range estimation for stereo pairs of unknown scenes. In: Proceedings of the Computer Vision Winter Workshop, pp. 1–10 (2004)

    Google Scholar 

  7. Min, D., Yea, S., Arican, Z., Vetro, A.: Disparity search range estimation: enforcing temporal consistency. In: Proceedings of the 2010 IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 2366–2369. IEEE (2010)

    Google Scholar 

  8. Smirnov, S., Gotchev, A., Hannuksela, M.: A disparity range estimation technique for stereo-video streaming applications. In: Proceedings of 2013 IEEE International Conference on Multimedia and Expo Workshops (ICMEW), pp. 1–4. IEEE (2013)

    Google Scholar 

  9. Sizintsev, M., Wildes, R.P.: Coarse-to-fine stereo vision with accurate 3D boundaries. Image Vis. Comput. 28(3), 352–366 (2010)

    Article  Google Scholar 

  10. Ozgunalp, U., Ai, X., Zhang, Z., Koc, G., Dahnoun, N.: Block-matching disparity map estimation using controlled search range. In: Proceedings of 2015 7th Computer Science and Electronic Engineering Conference (CEEC), pp. 35–40. IEEE (2015)

    Google Scholar 

  11. Ma, H., et al.: Multiple lane detection algorithm based on optimised dense disparity map estimation. In: Proceedings of 2018 IEEE International Conference on Imaging Systems and Techniques (IST), pp. 1–5. IEEE (2018)

    Google Scholar 

  12. Mun, J.H., Ho, Y.S.: Guided image filtering based disparity range control in stereo vision. Electron. Imaging 2017(5), 130–136 (2017)

    Article  Google Scholar 

  13. Scharstein, D., Szeliski, R.: High-accuracy stereo depth maps using structured light. In: Proceedings of 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003, vol. 1, pp. I–I. IEEE (2003)

    Google Scholar 

  14. Hirschmuller, H., Scharstein, D.: Evaluation of cost functions for stereo matching. In: Proceedings of 2007 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8. IEEE (2007)

    Google Scholar 

  15. Scharstein, D., et al.: High-resolution stereo datasets with subpixel-accurate ground truth. In: Jiang, X., Hornegger, J., Koch, R. (eds.) GCPR 2014. LNCS, vol. 8753, pp. 31–42. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11752-2_3

    Chapter  Google Scholar 

  16. Mayer, N., et al.: A large dataset to train convolutional networks for disparity, optical flow, and scene flow estimation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4040–4048 (2016)

    Google Scholar 

  17. Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: the KITTI dataset. Int. J. Robot. Res. 32(11), 1231–1237 (2013)

    Article  Google Scholar 

  18. Hirschmüller, H., Buder, M., Ernst, I.: Memory efficient semi-global matching. In: ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. 3, pp. 371–376 (2012)

    Google Scholar 

  19. Zha, D., Jin, X., Xiang, T.: A real-time global stereo-matching on FPGA. Microprocess. Microsyst. 47, 419–428 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruveen Perera .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Perera, R., Low, T. (2020). Automatic Stereo Disparity Search Range Detection on Parallel Computing Architectures. In: Campilho, A., Karray, F., Wang, Z. (eds) Image Analysis and Recognition. ICIAR 2020. Lecture Notes in Computer Science(), vol 12131. Springer, Cham. https://doi.org/10.1007/978-3-030-50347-5_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-50347-5_35

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-50346-8

  • Online ISBN: 978-3-030-50347-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics