Skip to main content

Biomimetic Design in Augmented Cognition

  • Conference paper
  • First Online:
Augmented Cognition. Theoretical and Technological Approaches (HCII 2020)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 12196))

Included in the following conference series:

Abstract

Biomimetic (“life mimicking”) systems automate functionality by replicating biological forms and processes (e.g., early airplane designs were trying to model winged flight in birds). In this way, organic systems not only supply proof of concept (“heavier-than-air flight is possible”), but also inform attempts to implement functionality by reproducing form in automated systems.

Important sub-disciplines within the science of machine learning have developed in this same way. The most widely used cognitive architectures closely resemble their biological starting points. Obvious examples are neural networks, expert systems, and genetic algorithms. The application of sophisticated optimization techniques to these systems can supersede unscalable aspects of the underlying biological metaphor (“airplanes do not flap their wings”). However, biomimetic principles inform possible approaches to solving many problems.

This paper describes the application of biomimetic design to augmented cognition and analyzes machine learning developments from a biomimetic lens. An experiment follows comparing Neural Networks and Bias-Based Learning and assesses their performance against human subjects. The last part synthesizes the results of the experiment with the principles underlying biomimetic design to foster effective problem-solving.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Svozil, D., Kvasnicka, V., Pospichal, J.: Introduction to multi-layer feed-forward neural networks. Chemom. Intell. Lab. Syst. 39(1), 43–62 (1997)

    Article  Google Scholar 

  2. McCulloch, W.S., Pitts, W.: A logical calculus of the ideas immanent in nervous activity. Bull. Math. Biophys. 5(4), 115–133 (1943)

    Article  MathSciNet  Google Scholar 

  3. Dreyfus, S.E.: Artificial neural networks, back propagation, and the Kelley-Bryson gradient procedure. J. Guid. Control Dyn. 13(5), 926–928 (1990)

    Article  MathSciNet  Google Scholar 

  4. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning representations by back-propagating errors. Nature 323(6088), 533–536 (1986)

    Article  Google Scholar 

  5. Hancock, M., et al.: Visualizing parameter spaces of deep-learning machines. In: Schmorrow, D.D., Fidopiastis, C.M. (eds.) HCII 2019. LNCS (LNAI), vol. 11580, pp. 192–210. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-22419-6_15

    Chapter  Google Scholar 

  6. Vu-Quoc, L.: Neuron and myelinated axon, with signal flow from inputs at dendrites to outputs at axon terminals. Wikimedia Commons, Wikipedia. https://commons.wikimedia.org/wiki/File:Neuron3.png. Accessed 16 Dec 2018

  7. Rules for Actions and Constraints - ScienceDirect. https://www.sciencedirect.com/science/article/pii/B9780128051603000053. Accessed 25 Jan 2020

  8. CiteSeerX—Expert Systems: Principles and Practice. http://citeseerx.ist.psu.edu/viewdoc/summary??doi=10.1.1.34.9207. Accessed 25 Jan 2020

  9. Joyce, J.: Bayes’ Theorem. In: Zalta, E.N. (ed.) The Stanford Encyclopedia of Philosophy (Spring 2019 Edition). https://plato.stanford.edu/archives/spr2019/entries/bayes-theorem/

  10. Leung, K.M.: Naive Bayesian classifier. Polytechnic University Department of Computer Science/Finance and Risk Engineering (2007)

    Google Scholar 

  11. Hancock, M.: Non-monotonic, bias-based reasoning under uncertainty. In: Proceedings of the 22nd International Conference on Human-Computer Interaction, Copenhagen, Denmark (July 2020)

    Google Scholar 

  12. Koza, J.R., Poli, R.: Genetic programming. In: Burke, E.K., Kendall, G. (eds.) Search Methodologies. Springer, Boston (2005). https://doi.org/10.1007/0-387-28356-0_5

    Chapter  Google Scholar 

  13. Cordeschi, R.: Searching in a maze, in search of knowledge: issues in early artificial intelligence. In: Stock, O., Schaerf, M. (eds.) Reasoning, Action and Interaction in AI Theories and Systems. LNCS (LNAI), vol. 4155, pp. 1–23. Springer, Heidelberg (2006). https://doi.org/10.1007/11829263_1

    Chapter  Google Scholar 

  14. Kaur, N.K.S.: A review of various maze solving algorithms based on graph theory. IJSRD, 6(12), 431–434 (2019). ISSN (online): 2321-0613

    Google Scholar 

  15. Knuth, D.E., Moore, R.W.: An analysis of alpha-beta pruning. Artif. Intell. 6(4), 293–326 (1975)

    Article  MathSciNet  Google Scholar 

  16. Swarms and Swarm Intelligence - IEEE Journals & Magazine. https://ieeexplore.ieee.org/abstract/document/4160239. Accessed 25 Jan 2020

  17. Honey Bees Inspired Optimization Method: The Bees Algorithm. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4553508/. Accessed 25 Jan 2020

  18. Swarm intelligence for routing in communication networks - IEEE Conference Publication. https://ieeexplore.ieee.org/abstract/document/966355. Accessed 25 Jan 2020

  19. A botnet-based command and control approach relying on swarm intelligence - ScienceDirect. https://www.sciencedirect.com/science/article/pii/S1084804513001161. Accessed 25 Jan 2020

  20. Zadeh, L.A.: Fuzzy logic. Computer 21(4), 83–93 (1988)

    Article  Google Scholar 

  21. Zadeh, L.A.: Fuzzy logic = computing with words. In: Zadeh, L.A., Kacprzyk, J. (eds.) Computing with Words in Information/Intelligent Systems 1. Studies in Fuzziness and Soft Computing, vol. 33. Physica, Heidelberg (1999). https://doi.org/10.1007/978-3-7908-1873-4_1

    Chapter  MATH  Google Scholar 

  22. Shaw, R.S.: Wikimedia. Wikimedia, Wikipedia. https://commons.wikimedia.org/wiki/File:Warm_fuzzy_logic_member_function.gif. Accessed 15 Nov 2004

  23. Subramanya, S.R., Lakshminarasimhan, N.: Computer viruses. IEEE Potentials 20(4), 16–19 (2001). https://doi.org/10.1109/45.969588

    Article  Google Scholar 

  24. Serazzi, G., Zanero, S.: Computer virus propagation models. In: Calzarossa, M.C., Gelenbe, E. (eds.) MASCOTS 2003. LNCS, vol. 2965, pp. 26–50. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24663-3_2

    Chapter  Google Scholar 

  25. Denning, P.J.: Computer viruses. Research Institute for Advanced Computer Science (1988). https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19890017050.pdf

  26. Fosnock, C.: Computer Worms: Past, Present, and Future, vol. 8. East Carolina University, Greenville (2005)

    Google Scholar 

  27. Haas, W.: Parasitic worms: strategies of host finding, recognition and invasion. Zoology 106(4), 349–364 (2003). https://doi.org/10.1078/0944-2006-00125

    Article  Google Scholar 

  28. Zou, C.C., Gong, W., Towsley, D.: Code red worm propagation modeling and analysis. In: Proceedings of the 9th ACM Conference on Computer and Communications Security. ACM (2002)

    Google Scholar 

  29. Moore, D., Shannon, C., Claffy, K.: Code-red: a case study on the spread and victims of an Internet worm. In: Proceedings of the 2nd ACM SIGCOMM Workshop on Internet measurement (2002)

    Google Scholar 

  30. Tetko, I.V., Livingstone, D.J., Luik, A.I.: Neural network studies. 1. Comparison of overfitting and overtraining. J. Chem. Inf. Comput. Sci. 35(5), 826–833 (1995)

    Article  Google Scholar 

  31. Festinger, L.: Cognitive dissonance. Sci. Am. 207(4), 93–106 (1962)

    Article  Google Scholar 

  32. Ratio Between Training Error and Validation Error. Stack Exchange. https://i.stack.imgur.com/HxlMa.png. Accessed 1 Aug 2015

  33. Designing the Flier. https://airandspace.si.edu/exhibitions/wright-brothers/online/fly/1903/designing.cfm. Accessed 8 Jan 2020

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin Bowles .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bowles, B., Hancock, M., Kirshner, M., Shaji, T. (2020). Biomimetic Design in Augmented Cognition. In: Schmorrow, D.D., Fidopiastis, C.M. (eds) Augmented Cognition. Theoretical and Technological Approaches. HCII 2020. Lecture Notes in Computer Science(), vol 12196. Springer, Cham. https://doi.org/10.1007/978-3-030-50353-6_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-50353-6_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-50352-9

  • Online ISBN: 978-3-030-50353-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics