
Challenge Collapsar (CC) Attack Traffic
Detection Based on Packet Field

Differentiated Preprocessing and Deep
Neural Network

Xiaolin Liu1,3, Shuhao Li1,2(B), Yongzheng Zhang1,2,3, Xiaochun Yun4,
and Jia Li4

1 Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China
liuxiaolin191@mails.ucas.ac.cn, {lishuhao,zhangyongzhen}@iie.ac.cn

2 Key Laboratory of Network Assessment Technology, Chinese Academy of Sciences,
Beijing, China

3 School of Cyber Security, University of Chinese Academy of Sciences,
Beijing, China

4 National Computer Network Emergency Response Technical Team/Coordination
Center of China, Beijing, China

{yunxiaochun,lijia}@cert.org.cn

Abstract. Distributed Denial of Service (DDoS) attack is one of the
top cyber threats. As a kind of application layer DDoS attack, Chal-
lenge Collapsar (CC) attack has become a real headache for defenders.
However, there are many researches on DDoS attack, but few on CC
attack. The related works on CC attack employ rule-based and machine
learning-based models, and just validate their models on the outdated
public datasets. These works appear to lag behind once the attack pat-
tern changes. In this paper, we present a model based on packet Field Dif-
ferentiated Preprocessing and Deep neural network (FDPD) to address
this problem. Besides, we collected a fresh dataset which contains 7.92
million packets from real network traffic to train and validate FDPD
model. The experimental results show that the accuracy of this model
reaches 98.55%, the F1 value reaches 98.59%, which is 3% higher than
the previous models (SVM and Random Forest-based detection model),
and the training speed is increased by 17 times in the same environ-
ment. It proved that the proposed model can help defenders improve the
efficiency of detecting CC attack.

Keywords: Malicious traffic detection · CC attack · Packet Field
Differentiated Preprocessing · Deep neural network

Supported by the National Key Research and Development Program of China (Grant
No.2016YFB0801502), and the National Natural Science Foundation of China (Grant
No.U1736218).

c© Springer Nature Switzerland AG 2020
V. V. Krzhizhanovskaya et al. (Eds.): ICCS 2020, LNCS 12139, pp. 282–296, 2020.
https://doi.org/10.1007/978-3-030-50420-5_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-50420-5_21&domain=pdf
https://doi.org/10.1007/978-3-030-50420-5_21

CC Attack Traffic Detection Based on FDPD 283

1 Introduction

With the development of the Internet and the advancement of technology, Dis-
tributed Denial of Service (DDoS) attack has become more and more serious.
Challenge Collapsar (CC) attack is a type of DDoS attack that sends forged
HTTP requests to some target web server frequently. These requests often
require complicated time-consuming caculations or database operations, in order
to exhaust the resource of the target web server. Because the HTTP request pack-
ets of CC attack are standard and sometimes their IPs are true, it’s difficult to
defend. According to reports, in February 2016, hackers launched a large-volume
CC attack against XBOX , one of the world’s largest online game-playing plat-
forms, causing a 24-h impact on the business [5]. Similar incidents are happening
endlessly, causing serious effects.

At present, the research on CC attack detection has the following limitations:

(1) High feature extraction dependency. Most of the previous detection
models are based on specific rules of CC attack. For example, Moore et al. [13]
found that the attack packet size and time interval had a certain regularity
when the attack occurred. So they use size and time to detect. It requires
a lot of statistical calculations and can’t be automatically updated to cope
with variant attacks.

(2) Long model training time. Current detection models are mostly machine
learning model. We have implemented representative machine learning mod-
els to train the data, including Support Vector Machine (SVM) and Random
Forest [7,17,23]. Experiments show that in the face of large-traffic dataset,
these models need a long training period, which is severely delayed in prac-
tice. In order to show the contrast, we divide the massive data into several
small datasets, and the results show that previous model is 17 times slower
than our model.

(3) Lack of real and fresh dataset. Most previous works are based on public
datasets [4,7,8,19], which is not new enough to cope with changing attack
patterns. Public datasets are often obtained by experts through empirical
and statistical analysis. Therefore, in the face of new attack variants, the
samples of the public datasets appear to be backward, making it difficult to
meet the ever-changing attack detection requirements in the real environ-
ment.

The contributions of this paper are as follows:

(1) We propose a packet field differentiated preprocessing algorithm.
Considering the specific meanings of the fields in the packet, we divide all
fields into four types (misleading fields, useless fields, discrete fields, non-
discrete fields) and process them differently (drop, one-hot encoding, ASCII
encoding). In traditional models, it is often necessary to extract the feature
artificially, which depends on expert experience severely. Compared with
this, our model greatly saves labor costs.

284 X. Liu et al.

(2) We present a CC attack detection model based on packet Field Dif-
ferentiated Preprocessing and Deep neural network (FDPD). Our
model leverages its powerful self-learning capabilities to learn the implicit
feature in traffic. The experimental results show that the accuracy reaches
98.55%, the recall is 98.41%, the precision is 98.76%, and the comprehensive
evaluation index F1 reaches 98.59%. Compared with the traditional SVM
and Random Forest-based malicious traffic detection models, the compre-
hensive evaluation index value F1 of our proposed model is increased by 3%,
and the processing speed is increased by 17 times.

(3) We collect a dataset of 7.92 million packets. This dataset contains
two parts. One is the CC attack packets from the CC attack script program
based on HTTP protocol. The other is non-CC attack packtes from the
backbone network traffic. And the data is labeled based on the system and
manual sampling check. Compared with the public dataset, our data is more
representative, which covers more CC attack ways.
The remainder of this paper is structured as follows. Section 2 discusses
related work. Section 3 introduces traffic detection model of challenge col-
lapsar attacks. The training and optimization process, experimental results
and analysis will be showed in Sect. 4. Section 5 discusses the limitation of
the proposed model. Finally, Sect. 6 concludes this paper.

2 Related Work

As an application layer attack based on HTTP protocol, CC attack is more sub-
tle than traditional flood-based DDoS attack [16], posing an increasing challenge
for Web service applications. Because of the low cost of attack and the disruptive
impact, HTTP protocol packet is the primary target of GET flood attacks. As
new attackers emerge, identifying these attacks is puzzling. Besides, due to the
continuous upgrade of existing attack tools and the increasing network band-
width [2], the cost of the attacker’s continuous connection request to the website
is getting lower and lower, and the Web server is more and more vulnerable.
Sree et al. [18] suggested that the exponential growth of the usage of Internet
led to cyberattacks. Among various attacks, the HTTP GET flood attack is one
of the main threats to Internet services because it exhausts resources and ser-
vices in the application layer. Because the attack request pattern is similar to a
legitimate client, it is difficult to distinguish them.

In addition, HTTP DDoS attacks in cloud computing and SDN fields have
intensified. Aborujilah et al. [1] mentioned that HTTP attack is one of the key
attacks on cloud-based Web servers. Lin et al. [10] found that 43% of the three
major network attacks are HTTP attack, and 27% of organizations face daily or
weekly HTTP attack.

2.1 Rule-Based Detection

At present, many detection models rely on rules based on attack characteristics.
Bin Xiao et al. [3] used the feature of time delay, obtained the feature distribution

CC Attack Traffic Detection Based on FDPD 285

of the time internal by maximum likelihood estimation, and linked it to the self-
organizing map neural network. And the abnormal detection is performed with the
set of the detection threshold. Miao Tan et al. [20] extracted key information from
different protocols packets, and proposed firefly group optimization algorithm by
combining pattern search and boundary variation.

An Wang et al. [21] proposed a new dataset, and found three rules by ana-
lyzing this new dataset: 1. Location-based analysis shows most attackers come
from active Botnet; 2. From the perspective of the target being attacked, mul-
tiple attacks on the same target also show a strong attack rule, so the start
time of the next attack from some botnet families can be accurately predicted;
3. Different Botnets have a similar trend of initiating DDoS attacks against the
same victim at the same time or in turn. Similarly, CC attack can be defended
against by painting a picture of attacker, but it doesn’t work when attackers
change their attack way.

2.2 Machine Learning-Based Detection

In the field of CC attack detection research, machine learning models are widely
used, including the original models and improvement models. Liu et al. [24] used
improved neighbor propagation clustering algorithm to pre-classify the attackers’
behavior with a small amount of prior knowledge, then merged and eliminated
by Silhouette index, and timely made cluster perform re-cluster.

Xie et al. [22] established the Hidden Semi-Markov model and calculated
the distance by the Euclidean distance formula. If the distance exceeds the limit
value, they think that an attack has occurred. Kshira et al. [14] used the learning
automaton (LA) model to implement DDoS defense based on the number of SYN
requests and the actual number of TCP connections, and defended DDoS attacks
on the hardware level to reduce the damage caused by the attack behavior. Sudip
et al. [11] used learning automaton model to protect the network from DDoS
attacks based on the existing optimized link state routing protocol.

2.3 Deep Learning-Based Detection

DDoS attacks often cause network delays. Xiao et al. [3] measures the delay
from one network port to another, and use the maximum likelihood model to
estimate the characteristic distribution of the traffic delay. They use a neural
network of self-organizing maps to set thresholds based on learning results for
anomaly detection. In order to solve the HTTP malicious traffic detection prob-
lem, Li et al. [9] proposed a model which combined convolutional neural network
(CNN) and multilayer perceptron (MLP) based on the combination of raw data
and empirical feature engineering. Their experiments showed good results. This
proves the effectiveness of deep learning again. It’s known that deep learning has
excellent self-learning ability. Therefore, we employ deep learning to better cope
with CC attack variants.

286 X. Liu et al.

3 Modeling Methodology

Our FDPD model consists of two parts, one is a preprocessing algorithm and
the other is a deep neural network, as is shown in Fig. 1.

3.1 Packet Field Differentiated Preprocessing Algorithm

CC attack is an interactive application layer attack based on the HTTP/HTTPs
protocol. The potential features of this attack are often contained at the flow
level, so the collected underlying TCP/IP data packets need to be restored and
spliced, including CC attack flows and other flows. There are several factors that
need to be considered. Firstly, the conditions that the packets can be regarded
as a flow, here we introduce the flow period and the number of packets as the
restoration and splice conditions. Secondly, the role of different fields in the
packet should be considered while learning the CC attack behavior laws, here
we classify the fields into four categories, a) misleading field, these fields can
interfere with the model and have an adverse effect on model training; b) useless
field, such as the fields that always stay same; c) discrete field; d) non-discrete
field. Therefore, we propose a preprocessing algorithm for packet fields, as shown
in Algorithm 1. Before explaining the algorithm, three functions that appear in
the algorithm are illustrated.

f1(protocolF ield) =

⎧
⎪⎪⎨

⎪⎪⎩

−1 Misleadingfield
0 Constantfield
1 Discretefield
2 Non − discretefield

(1)

f2(protocolF ield) = fone−hot(protocolF ield) (2)

f3(protocolF ield) = fASCII(protocolF ield) (3)

Fig. 1. The structure of FDPD model

CC Attack Traffic Detection Based on FDPD 287

In the algorithm, as for pj ∈ Set packets, we firstly splice them into multi-
ple flows by quadruple = (sourceip, destinationip, sourceport, destinationport),
and then we get flow =

∑k
j=1 pj , each flow has the same quadruple. As a result,

we get many flows, the set of flows is written as Set flows =
∑m

i=1 flowi.
Considering the flow period and the number of packets, we define the time

interval threshold α and the number of packets threshold β, where α is the
time period constraint of a single flow, corresponding to the input variable
t flowPeriod in the algorithm, and β is the constraint of the number of pack-
ets in a single flow, corresponding to the input variable n packetNumber in the
algorithm. The pj in each flowi is trimmed, and the original flowi is reorganized
and updated. The updated flowi includes new header and payload. The struc-
ture is shown in Fig. 2. The header contains the TCP/IP packet header fields
(such as “ip”, “port”, “reserved”, “flags”, etc.), and the payload contains the
HTTP packet header fields and all other fields. Combining the specific meanings
of the fields in the packet, we divide all fields into four types and process different
types of fields differently.

(1) Misleading field. Misleading field mainly refers to “IP”, “url”, “host”. For
this type of fields, we adopt the strategy of dropping. Because the training
sample is limited, and the value of this type of fields are fixed, but in fact,
when the CC attack is launched, the attacker will constantly change the
attack node and the attack target. The values of these fields are uncertain,

Algorithm 1. Packet Field Differentiated Preprocessing algorithm of FDPD
Input: Set packets, t flowPeriod, n packetNumber
Output: Set Tensor, Set lengthOfTensor

1: Initialization t′ = t0 + t flowPeriod, n′ = n packetNumber
2: Set flows = Set packets.groupby(quadruple) #classify packets to flows
3: for each flowi ∈ Set flows do
4: for each pj ∈ flowi do
5: if pj .time < t′ and j < n′ then
6: flowi.header = merge1(flowi.header, pj .header) #merge the different

part
7: flowi.payload = merge2(flowi.payload, pj .payload) #merge all the

part

8: for each flowi ∈ Set flows do
9: lpayload, Tpayload = f3(flowi.payload)

10: if f1(flowi.header.protocolF ield) == 1 then
11: ldiscreteField, TdiscreteField = f2(flowi.header.protocolF ield)

12: if f1(flowi.header.protocolF ield) == 2 then
13: lnondiscreteField, TnondiscreteField = f3(flowi.header.protocolF ield)

14: Tensor = concat(Tpayload, TdiscreteField, TnondiscreteField)
15: lengthOfTensor = lpayload + ldiscreteField + lnondiscreteField

16: Set Tensor.add(Tensor)
17: Set lengthOfTensor.add(lengthOfTensor)

return Set Tensor,Set lengthOfTensor

288 X. Liu et al.

so judging whether the traffic has CC aggressiveness through such fields has
a very large error. Dropping these fields can prevent the overfitting problem
of deep learning; By the way, this fields are sensitive, and removing them
can protect privacy.

(2) Useless field. Useless field mainly refers to “reserved”. We also adopt the
strategy of dropping for such fields. Because such fields stay unchanged in
the packet, they are not distinguishable. Although it may be helpful for
other detections, such as hidden channel discovery, it does not make any
sense to determine whether the traffic has CC aggressiveness. So retaining
such fields will increase the cost of model training, and it may even reduce
the accuracy of the model because it learns the features of other kinds of
attack behaviors.

(3) Discrete field. Discrete field mainly refers to “flags” and “HTTP version”.
The values of these fields are discrete. For such fields, we use one-hot encod-
ing. Because deep learning often uses distance when classifying, the one-hot
encoding method will make the distance calculation between features more
reasonable and protect the meaning of the original fields. For example, there
are six values in “flags” field: ‘URG’ ‘ACK’ ‘PSH’ ‘RST’ ‘SYN’ ‘FIN’. After
one-hot encoding, the distance between two values is 1. Generally, the dis-
tance is used to measure the similarity between them, and the classification
is based on the distance. By this way, they are obviously divided into the
same category, it’s in line with the facts; if ASCII encoding is used, the
distance between values will be unreasonable.

(4) Non-discrete field. For Non-discrete field, such as “Payload” , use ASCII
encoding to get the value from 0 to 127.
Finally, the processed fields are spliced to obtain a Tensor, which is used as
the input of the deep neural network, as described in Sect. 3.2.

source IP
destination IP

source port destination port

Method HTTP-Version
Accept:***

Referer: ***
Accept-Language: ***
Accept-Encoding: ***
User-Agent: ***

Connection: ***
Cookie:***

data

0 3 7 15 31

Header

Payload

U
R
G

A
C
K

P
S
H

R
S
T

S
Y
N

F
I
N

Fig. 2. Updated flowi, containing the new header and payload

CC Attack Traffic Detection Based on FDPD 289

3.2 Deep Neural Network Structure

In addition to the necessary data preprocessing, rule-based or machine learning-
based malicious traffic detection methods also require manual extraction of
attack features. Most rule-based models need to summarize the representative
rules of CC attack behavior through many statistical calculations. Then they use
the rules directly or combine machine learning to classify the traffic, but once
the attacker changes the CC attack mode slightly, these models will not work.

In the data preprocessing as described in Sect. 3.1, we get input data Tensor
that fully covers the packet information. After that, we didn’t spend a lot of man-
ual labor to perform feature extraction on the remaining useful fields. Instead,
we automated this work. We set up a deep neural network after data preprocess-
ing, and use its powerful self-learning capabilities to mine the hidden features
in the traffic, let it automatically learn the difference between CC attack traffic
and non-CC attack traffic at the packet level, which helps further improve the
efficiency of CC Attack traffic detection.

Our deep neural network is a fully connected network with a four-layer struc-
ture, containing the input layer, two hidden layers, and the output layer, uses
ReLU as the activation function in the hidden layers, uses Logistic Regression as
the classifier in the output layer, and uses the cross entropy as the loss function
to update the weight and bias values.

The number of input layer neurons depends on the dimention of Tensor, its
value is related to three factors: t flowPeriod, n packetNumber and the length
of packet. The first two factors are the limiting conditions of data preprocessing,
and the latter factor is needed because our deep neural network model can only
process fixed-length inputs, so the length of the input data must be uniformly
standardized. The determination of these three values will be discussed in the
experimental section. As far hidden layers, the most important thing is the num-
ber of neurons in the hidden layers. We finally determined the numbers to be
500 and 300 respectively, and the detail is also discussed in the experimental
section. The number of output layer neurons is the number of classifications,
and our issue is a two-category problem. So there are two kinds of results: CC
attack traffic or Non-CC attack traffic. There is a threshold δ, if the output value
is not less than δ, we identify it as CC attack traffic and Non-CC attack traffic
conversely.

The deep neural network learns the numerical input data, calculates the loss
function, and updates the parameters through the back propagation. In order to
prevent overfitting problem, we adopt Dropout strategy in all the hidden layers.

4 Experiments and Analysis

The basic experimental environment: CPU frequency is 2061 MHZ; CPU core is
64; RAM is 64 GB; GPU is GeForce GTX TITAN and the number is 8.

290 X. Liu et al.

4.1 Dataset

The data source of this paper: a) CC attack traffic comes from the attack scripts
based on HTTP protocol; b) Non-CC attack traffic comes from backbone net-
work traffic. We annotate the dataset through system detection and manual
verification. The dataset contains more than 1.8 million CC attack traffic data
and more than 6.12 million non-CC attack traffic data. We share the dataset on
Github1 .

Table 1. Attacked domain name

Name Types Domain name

Baidu Search https://www.baidu.com/

Eastern Military Network Military http://mil.eastday.com/

Jingdong Mall Shopping https://www.jd.com/

Shanghai Pudong Development Bank Bank https://www.spdb.com.cn/

Starting point novel Read https://www.qidian.com

Blood war song Online games https://mir2.youxi.com/

Straight flush Stock https://www.10jqka.com.cn/

Wangyi cloud music Music https://music.163.com/

Ctrip Travel https://www.ctrip.com/

YouKu Video https://www.youku.com/

58City Life https://bj.58.com/

Tencent sports Sports https://sports.qq.com/

Today’s headlines News https://www.toutiao.com/

The CC attack traffic data is generated by running CC attack scripts. These
scripts covers a lot of CC attack ways, and the scripts are placed on Github2. In
order to ensure that CC attack traffic will not cause substantial damage to the
attack target, we build a network filter, by which the CC attack packets will be
intercepted locally and stored as samples of the dataset. On the Ubuntu system,
run the compiled CC attack scripts to launch attacks against 13 different kinds
of domain names and open our network filter to capture the generated traffic.
The domain name to be attacked are as shown in Table 1. And then more than
1.8 million CC attack packets are obtained through our filter.

Non-CC attack traffic data comes from communication among multiple
servers and hosts. It is obtained in the backbone network, and captured through
the whitelist. After capturing, more than 6.12 million packets are obtained, which
basically covers the network communication among various web services.

1 https://github.com/xiaolini/Sample Dataset afterprocess.
2 https://github.com/xiaolini/Script.

https://www.baidu.com/
http://mil.eastday.com/
https://www.jd.com/
https://www.spdb.com.cn/
https://www.qidian.com
https://mir2.youxi.com/
https://www.10jqka.com.cn/
https://music.163.com/
https://www.ctrip.com/
https://www.youku.com/
https://bj.58.com/
https://sports.qq.com/
https://www.toutiao.com/
https://github.com/xiaolini/Sample_Dataset_afterprocess.
https://github.com/xiaolini/Script.

CC Attack Traffic Detection Based on FDPD 291

4.2 Training and Validation

The evaluation indexes are as follows:

Accuracy =
TP + TN

TP + FN + TN + FP
(4)

Precision =
TP

TP + FP
(5)

Recall =
TP

TP + FN
(6)

Fβ =
(1 + β2) ∗ Precision ∗ Recall

(β2) ∗ Precision + Recall
, β = 1 (7)

where TP (True Positive): CC traffic is correctly identified as CC traffic; FP
(False Positive): Non-CC attack traffic is incorrectly identified as CC traffic; FN
(False Negative): CC traffic is incorrectly identified as Non-CC attack traffic; TN
(True Negative): Non-CC attack traffic is correctly identified as Non-CC attack
traffic.

We divided the dataset into two parts: Training set (60%) and Test set (40%).
In order to determine specific model parameters, we further divided the train-
ing set into another two parts: Estimation set and Validation set, of which the
estimation set accounts for 2/3, the validation set accounts for 1/3.

In the preprocessing phase, we first need to determine the time threshold
t flowPeriod and the number threshold of packets in a flow n packetNumber.
In addition, the model can only adapt to fixed-length inputs, so we need to deter-
mine a fixed value. CC attackers often try to exhaust the victim’s resources,
the attack traffic is often short and frequent, so we set t flowPeriod to 0.5s.
n packetNumber and the length of packet is determined by experiments that
shown in Fig. 3. Figure 3(a) shows the percentage of the flow with less pack-
ets than n(n = 13, 14, ..., 21). We can see 63% flows contains less than 18
packets, and the statistical average value is 17.95. Therefore, we determined

(a) n packetNumber (b) the length of packet

Fig. 3. The parameter determination in the data preprocessing

292 X. Liu et al.

n packetNumber = 18, so that it doesn’t cause excessive abandonment and fill-
ing during data processing. Figure 3(b) is about the accuracy, we determined
the length of packet is 64(bytes).

According to t flowPeriod, n packetNumber and the length of packet, we
drop the redundant packets, fill the insufficient packets with –1, and remove
the excessive part. Then, we get updated flow with new header and payload. We
drop the misleading fields and useless fields of the new flow, use one-hot encoding
for discrete fields and use ASCII encoding for non-discrete fields. After that, we
convert all the useful data into numeric data, and finally obtain 1152-dimension
tensors as the input of DNN.

(a) The nodes of hidden layers (b) Activation function

(c) Optimizer (d) Learning rate

Fig. 4. The parameter determination in the model optimization (‘x’ axis represents
‘iterations’)

Our DNN is a fully connected network with a four-layer structure, containing
the input layer, two hidden layers, and the output layer. Optimize DNN through
four steps in Fig. 4.

1) We use two hidden layers and change the number of nodes in each hidden
layer. Considering the final accuracy, we determine 500 and 300 (Fig. 4(a)). 2)
We try to use sigmoid, tanh and ReLU as the activation function of hidden
layer. It’s obvious that ReLU has a great acceleration effect on the convergence
compared with the other two (Fig. 4(b)). 3) We carried out experiments with
SGD, Momentum, RMSprop and Adam respectively. As the gradient becomes
sparser, Adam converges faster than the other three and the accuracy remains at
a high level. So we choose the Adam optimizer to update the model parameters

CC Attack Traffic Detection Based on FDPD 293

(Fig. 4(c)). 4) We control the learning rate at 0.00001. Because the training
process is more stable and the final accuracy rate is higher (Fig. 4(d)).

Through above steps, we obtain an optimal model. Finally, the model is
trained in batches, the minimum batch is 20 flows every time, with a total of 20
iterations. The testing results are shown in Fig. 5, the accuracy increases from
75.45% to 98.55%, the recall reaches 98.41%, the precision reaches 98.76%, and
the comprehensive evaluation index F1 reaches 98.59%. Obviously, our model
can accurately and quickly detect CC attack.

4.3 Robustness Analysis

In order to evaluate the robustness of the model, we adjust the ratio of attack
traffic to non-CC attack traffic in training set to 1:1, 1:2, 1:3, 1:4, 1:8 and 1:11. For
this, the number of CC-attack packets is controlled at 360,000 and the number
of non-CC attack packets is changed several times. Besides, the test set contains
180,000 CC-attack packets and 720,000 non-CC attack packets.

The test results in different experimental environments are shown in Fig. 6.
Through the experimental results, it can be found that the test results of the
model under different environments are good. The accuracy is around 98%, indi-
cating that the model has a good classification effect; the recall approaches 99%,
indicating that the FN value is small, the model underreporting rate is low; the
accuracy is about 95%, which means that the FC value is small and the model
false positive rate is low; the F1 value is about 97%, and the model compre-
hensive evaluation index is high, which can meet the needs of different practical
application environments. In summary, the model has strong capability to detect
attack traffic and can cope with more complex actual network environments.

Fig. 5. The experimental results of FDPF
model (‘x’ axis represents ‘iterations’)

Fig. 6. The experimental results in dif-
ferent training set ratios

4.4 Comparison with Related Methods

In order to objectively evaluate the detection efficiency of our model, we choose
classic and widely used related detection methods for comparative experiments.

294 X. Liu et al.

Many good research, such as [7,17,23], used SVM classifier or random forest-
based model for DDoS attack detection. Their experimental results show that
these model has satisfying effect for their research problem. Therefore, we adopt
SVM and random forest as comparison, and carry out the training and test
under the same dataset used in this paper.

From the perspective of algorithm time complexity, the time complexity of
the model used in this paper is O(e ∗ H ∗ (K + d) ∗ Nsample) [6], where e is
the number of network model training cycles; H is the number of hidden layers;
K is the number of output layer nodes; d is the number of input layer nodes.
The time complexity of Random Forest is O(Nsample ∗ Nfeature ∗ logNsample)
[12], where Nsample is the number of samples, Nfeature is the dimension of fea-
tures. The time complexity of SVM is O(N2

Hessian) + O(Nsample) + O(Nsample ∗
Nfeature ∗ NHessian) [15], where NHessian is the number of matrix rows after
feature matrixing, equals to Nsample, O(Nsample ∗ Nfeature ∗ NHessian) is the
time complexity of an iterative process, O(Nsample) is the time complexity of
storing intermediate results, O(N2

Hessian) is the time complexity of storing fea-
ture matrix. Through this comparison, it can be found that when the dataset
is large, the time complexity of the Random Forest and SVM algorithms will
increase exponentially, and the training cost of the model will increase greatly;
in the case of the same amount of data, SVM needs to spend more time to store
data matrices and intermediate results.

Table 2. Evaluation index and speed comparison

SVM-RBF Random forest FDPD model

Accuracy 95.00% 94.89% 98.55%

Recall 88.89% 93.00% 98.42%

Presicion 96.43% 95.00% 98.76%

F1 94.12% 94.00% 98.59%

Speed 7.96 Mb/s 5.78 Mb/s 137.37Mb/s

The SVM model, the Random Forest model, and our proposed model are
trained on our dataset. Experimental comparison results are shown in Table 2,
and it can be found that the accuracy of the proposed model is 3% higher than
SVM and Random Forest-based malicious traffic detection model. Apart from
this, the test speed of our model is nearly 17 times faster than the related machine
learning model.

5 Discussion

Due to the changing attack patterns and limited traffic collection methods, the
traffic contained in the dataset for experiments can’t cover all the CC attack
variants, so the trained model may have a unsatisfactory effect when detecting
unknown CC attack traffic. However, if the training data is sufficient enough, the

CC Attack Traffic Detection Based on FDPD 295

model proposed in this paper can detect more attack traffic efficiently, because it
has good data-preprocessing ability and self-learning ability. The FDPD model
can adequately learn the features implied in the traffic and use them for classifi-
cation. Furthermore, the reason that we don’t use other neural networks, such as
CNN, RNN, is to improve the efficiency of training and detection while ensuring
the effect. Since the dimension of the input after preprocessing is not very high
and our model shows good result, it is not necessary to spend extra designing
and training costs to build overly complex models.

6 Conclusion and Future Work

In order to cope with CC attack, we proposed a packet Field Differentiated
Preprocessing and Deep neural network (FDPD) model to detect CC attack
traffic. And we collected a fresh dataset that contains 7.92 million packets to
validate our model. In the design of FDPD model, efficient strategies are adopted
to prevent overfitting problem of deep learning. In the preprocessing phase, we
combine the specific meaning of each field of the packet to drop misleading
field such as ‘IP’ and useless fields such as ‘reserved’. In the model training
phase, a dropout strategy is adopted for each hidden layer. The experimental
results show that the accuracy of FDPD model reaches 98%. In the same training
environment, our model was compared with the SVM-based and Random Forest-
based traffic detection models. The accuracy is increased by 3%, and the speed
is increased by 17 times.

In the future, we will improve in the following aspects: 1) Train a more
effective attack traffic detection model; 2) Enrich our dataset.

References

1. Abdulaziz, A., Shahrulniza, M.: Cloud-based DDoS http attack detection using
covariance matrix approach. J. Comput. Netw. Commun. 2017(38), 1–8 (2017)

2. Adi, E., Baig, Z., Hingston, P.: Stealthy denial of service (DoS) attack modelling
and detection for http/2 services. J. Netw. Comput. Appl. 91, S1084804517301637
(2017)

3. Xiao, B., Chen, W., He, Y., Sha, E.M.: An active detecting method against SYN
flooding attack. In: International Conference on Parallel & Distributed Systems
(2005)

4. Cheng, R., Xu, R., Tang, X., Sheng, V.S., Cai, C.: An abnormal network flow
feature sequence prediction approach for DDoS attacks detection in big data envi-
ronment. Comput. Mater. Continua 55(1), 095–095 (2018)

5. Douglas, D., Santanna, J.J., Schmidt, R.D.O., Granville, L.Z., Pras, A.: Booters:
can anything justify distributed denial-of-service (DDoS) attacks for hire? J. Inf.
Commun. Ethics Soc. 15(1), 90–104 (2017)

6. Alpaydin, E.: Introduction to Machine Learning. MIT press, Cambridge (2009)
7. Idhammad, M., Afdel, K., Belouch, M.: Detection system of HTTP DDoS attacks

in a cloud environment based on information theoretic entropy and random forest.
In: Security and Communication Networks (2018)

296 X. Liu et al.

8. Kumar, D., Rao, C.G.: Leveraging big data analytics for real-time DDoS attacks
detection in SDN. Int. J. Res. Eng. Appl. Manag. IJREAM 04(02), 677–684 (2018)

9. Li, J., Yun, X., Li, S., Zhang, Y., Xie, J., Fang, F.: A HTTP malicious traffic
detection method based on hybrid structure deep neural network. J. Commun.
40(01), 28–37 (2019)

10. Lin, Y.H., Kuo, J.J., Yang, D.N., Chen, W.T.: A cost-effective shuffling-based
defense against HTTP DDoS attacks with sdn/nfv. In: IEEE International Con-
ference on Communications, pp. 1–7 (2017)

11. Misra, S., Krishna, P.V., Abraham, K.I., Sasikumar, N., Fredun, S.: An adaptive
learning routing protocol for the prevention of distributed denial of service attacks
in wireless mesh networks. Comput. Math. Appl. 60(2), 294–306 (2010)

12. Idhammad, M., Afdel, K., Belouch, M.: Detection system of HTTP DDoS attacks
in a cloud environment based on information theoretic entropy and random forest.
Secur. Commun. Netw. 2018(1263123), 1–13 (2018)

13. Moore, D., Voelker, G.M., Savage, S.: Inferring internet denial-of-service attack.
In: Conference on Usenix Security Symposium (2001)

14. Sahoo, K.S., Tiwary, M., Sahoo, S., Nambiar, R., Sahoo, B., Dash, R.: A learning
automata-based DDoS attack defense mechanism in software defined networks. In:
Proceedings of the 24th Annual International Conference on Mobile Computing
and Networking, pp. 795–797 (2018)

15. Sahu, S.K., Jena, S.K.: A multiclass SVM classification approach for intrusion
detection. In: International Conference on Distributed Computing & Internet Tech-
nology (2016)

16. Singh, K., Singh, P., Kumar, K.: Application layer HTTP-get flood DDoS attacks:
research landscape and challenges. Comput. Secur. 65, 344–372 (2017)

17. Singh, K., Singh, P., Kumar, K.: User behavior analytics-based classification of
application layer HTTP-GET flood attacks. J. Netw. Comput. Appl. 112, 97–114
(2018)

18. Sree, T.R., Bhanu, S.M.S.: Hadm: detection of HTTP get flooding attacks by using
analytical hierarchical process and dempster-shafer theory with mapreduce. Secur.
Commun. Netw. 9(17), 4341–4357 (2016)

19. Su, L., Yao, Y., Li, N., Liu, J., Lu, Z., Liu, B.: Hierarchical clustering based network
traffic data reduction for improving suspicious flow detection. In: IEEE Interna-
tional Conference on Trust, Security and Privacy in Computing and Communica-
tions, pp. 744–753 (2018)

20. Tan, M.: Research and implementation of DDoS attack detection based on machine
learning in distributed environment. Ph.D. thesis (2018)

21. Wang, A., Mohaisen, A., Chang, W., Chen, S.: Delving into internet DDoS attacks
by botnets: Characterization and analysis. In: IEEE/IFIP International Conference
on Dependable Systems & Networks, vol. 26, pp. 2843–2855 (2015)

22. Xie, Y., Yu, S.Z.: A large-scale hidden semi-markov model for anomaly detection
on user browsing behaviors. IEEE/ACM Trans. Netw. 17(1), 54–65 (2009)

23. Ye, J., Cheng, X., Zhu, J., Feng, L., Song, L.: A DDoS attack detection method
based on SVM in software defined network. In: Security and Communication Net-
works (2018)

24. Liu, Z., Zhang,B.: Self-learning application layer DDoS detection method based on
improved AP clustering algorithm (2018)

	Challenge Collapsar (CC) Attack Traffic Detection Based on Packet Field Differentiated Preprocessing and Deep Neural Network
	1 Introduction
	2 Related Work
	2.1 Rule-Based Detection
	2.2 Machine Learning-Based Detection
	2.3 Deep Learning-Based Detection

	3 Modeling Methodology
	3.1 Packet Field Differentiated Preprocessing Algorithm
	3.2 Deep Neural Network Structure

	4 Experiments and Analysis
	4.1 Dataset
	4.2 Training and Validation
	4.3 Robustness Analysis
	4.4 Comparison with Related Methods

	5 Discussion
	6 Conclusion and Future Work
	References

