
A Stochastic Birth-Death Model
of Information Propagation Within

Human Networks

Prasidh Chhabria(B) and Winnie Lu

Harvard University, Cambridge, MA 02138, USA
chhabria@college.harvard.edu

Abstract. The fixation probability of a mutation in a population net-
work is a widely-studied phenomenon in evolutionary dynamics. This
mutation model following a Moran process finds a compelling applica-
tion in modeling information propagation through human networks. Here
we present a stochastic model for a two-state human population in which
each of N individual nodes subscribes to one of two contrasting messages,
or pieces of information. We use a mutation model to describe the spread
of one of the two messages labeled the mutant, regulated by stochastic
parameters such as talkativity and belief probability for an arbitrary
fitness r of the mutant message. The fixation of mutant information is
analyzed for an unstructured well-mixed population and simulated on
a Barabási-Albert graph to mirror a human social network of N = 100
individuals. Chiefly, we introduce the possibility of a single node speak-
ing to multiple information recipients or listeners, each independent of
one another, per a binomial distribution. We find that while in mixed
populations, the fixation probability of the mutant message is strongly
correlated with the talkativity (sample correlation ρ = 0.96) and belief
probability (ρ = −0.74) of the initial mutant, these correlations with
respect to talkativity (ρ = 0.61) and belief probability (ρ = −0.49) are
weaker on BA graph simulations. This indicates the likely effect of added
stochastic noise associated with the inherent construction of graphs and
human networks.

Keywords: Evolutionary dynamics · Human networks · Birth-death
process

1 Introduction

The spread of information within human networks remains a particularly com-
plex phenomenon, of particular interest in a time when information channels are
varied and numerous [2]. Today, information propagates through more media
than ever before; as a result, modeling the spread of information is difficult
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and must account for complexities arising from heterogeneity in communica-
tion across different channels. The phenomenon of information propagation on a
network can be seen at play in politics, public health information, and social net-
works, among other common scenarios. Thus, understanding the dynamics of its
spread is crucial to developing systems that encourage the spread of beneficial,
factual information while deterring the spread of misleading or malicious infor-
mation. The evolutionary dynamics of two competing, and often contrasting,
pieces of information can be meaningfully characterized in both deterministic
and stochastic models of human social networks.

In this paper, we model the spread of a mutant piece of information through-
out an unstructured, well-mixed population of size N . We consider the case of
one-to-one communication in which a speaker is able to speak to only one indi-
vidual at a time. We then consider the case of one-to-many communication in
which a speaker is able to simultaneously speak to multiple receivers. We then
replicate this analysis by simulating on a Barabási-Albert graph, as an approx-
imation of a classical human network.

1.1 Observed Information Propagation Models

Several mathematical models have been constructed to explain information
spread. The majority of established studies have used deterministic models [4]
such as the classic Spreader-Ignorant (SI) [5] and Spreader-Ignorant-Stifler (SIS)
[6] rumor models. A spreader is an infected, or mutated, node that can spread
the rumor to its neighbors. An ignorant is a susceptible node, which has not been
exposed to the rumor. Finally, stiflers are nodes which have been exposed to the
rumor but do not spread it. The present study attempts to establish a continuous
spectrum across these three classes of nodes, by introducing probabilistic param-
eters such as talkativity and belief probability, to quantify the likelihood of each
node believing and or sharing a piece of information. This allows for greater flex-
ibility in the model rather than classifying each node into one of three categories.
Several existing studies using deterministic models encounter problems while fit-
ting suitable parameter values to a system of differential equations. These are
unable to account for stochastic noise or probabilistic barriers. Since the spread
of information depends on probabilities at each stage, the present study presents
it as a stochastic process. We use a mutation model following a birth-death pro-
cess to illustrate the transmission of information through a population, in a
manner similar to a mutation albeit with altered parameters.

1.2 The Moran Birth-Death Process

The Moran process is a birth-death process [7] used to study the fixation of a
mutant allele in an other wild-type population of size N . There are two absorbing
states, at i = 0: where there are no mutants in the population, and i = N : where
the mutant has fixated, i.e. spread to every node in the population [1]. In each
time step of the process, there is always a single birth and a single death, so the
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number of mutants in the population can change by at most one. The present
study will extend this to a one-to-many process enabling group communication.

1.3 Barabási-Albert Graph [8]

The Barabási-Albert network is a widely used graph architecture for reproducing
the structure of a real human social network [9]. It is a stochastic scale-free
network generated by a distribution specified by the number of nodes and the
average number of neighbors for each node. The present study relies on the BA
graph, following its widespread use in literature for understanding the dynamic
nature of human activities in social networks [10] (Fig. 1).

Fig. 1. A simple Barabási-Albert Graph computer-generated by a population of N =
60 nodes and an average number of k = 10 neighbors for each node.

2 Results

We outline a model for both one-to-one and one-to-many communication, begin-
ning in an unstructured, well-mixed population. In both cases, we assume that
the population is comprised of individuals (also known as ‘nodes’). Within this
population, we consider two competing and often contrasting pieces of infor-
mation: the ‘mutated’ message and the ‘non-mutated’ message. The former is
the variant of information whose propagation and fixation are of interest to our
study. Following a mutation model, it begins as a rare event in the population
and can either fixate, die out, or coexist with the non-mutated message. We
consider only two pieces of information; each node believes one or the other,
but not both. We say that the “mutant” confers a fitness of r to all believers
(mutant nodes); r < 1 if knowledge and belief of the mutated message make
an individual less likely to share the information, while r > 1 would suggest a
heightened need to spread the mutant message.
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A node that has been exposed to the mutated message and believes it is a
mutant. A non-mutant is a node that has either not been exposed to or does
not believe the mutated message. Past exposure to the mutant message is inde-
pendent of a node’s future belief probability if/when it is re-exposed to the mes-
sage. A speaker is a node who communicates a piece of information, regardless
of whether or not it is mutated. The speaker acts as the reproducing individual
in a birth-death process. A receiver is an individual who listens to a message,
representing the ‘death’ node, regardless of whether it is mutated or not. A node
at position k has a talkativity τk where 0 ≤ τk ≤ 1. A higher τk here indicates
that the node is more likely to be a speaker and spread the message to which it
subscribes. A node at position k has belief probability βk where 0 ≤ βk ≤ 1. A
larger βk here indicates that the node is more likely to believe the information
it receives from a speaker.

In a well-mixed population of N individuals with i mutants, index posi-
tions 1 through i are mutants and index positions i + 1 through N are non-
mutants. When a node mutates, they are re-indexed into the ith position. We
disregard order within the population of mutants and within the population of
non-mutants, as only the number of mutants and non-mutants is pertinent to
the model.

2.1 One-to-One Communication Model

We begin modeling an unstructured, well-mixed population in which one speaker
node communicates to only one recipient node at a time. The population begins
with one mutant (allowing for fixation to be studied) but can have any number
0 ≤ i ≤ N of mutants at any given stage.

Population Shifts from i to i−1 Mutants: To facilitate this state change,
a non-mutant must speak to a mutant who receives and believes the non-mutated
message. The probability of this state change (see Model Equations and Ana-
lytic Results for derivation) is:

pi,i−1 =
∑N

k=i+1 τk

r
∑i

k=1 τk +
∑N

k=i+1 τk

∑i
k=1 βk

N
(1)

Population Shifts from i to i+1 Mutants: In order for this state change
to occur, a mutant must speak to a non-mutant who listens and believes the
mutated information. The probability of this transition is (see Model Equa-
tions and Analytic Results for derivation):

pi,i+1 =
r
∑i

k=1 τk

r
∑i

k=1 τk +
∑N

k=i+1 τk

∑N
k=i+1 βk

N
(2)

2.2 One-to-Many Communication Model

The following explains the transition in population states in an unstructured,
well-mixed population, in which one speaker node communicates to more than
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one recipient node simultaneously. Similar to the one-to-one model, the popu-
lation begins with 1 mutant for the sake of this paper, but the population can
have 0 ≤ i ≤ N mutants at any given stage.

The probability pm,n that a population goes from m mutants to n mutants
where m,n ∈ R and 0 ≤ m,n ≤ N is given by an (N + 1) by (N + 1) transition
matrix P . Let P consist of elements pm,n:

P(N+1×N+1) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0 ... 0
p1,0 p1,1 p1,2 p1,3 ... p1,N

0 ... p2,2 ... ...
...

... ...
. . . . . . . . .

...
...

...
...

. . . . . .
...

pN−1,0 ... ... ... ... pN−1,N
0 0 0 ... ... 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(3)

The transition matrix displays two clear absorbing states in its first and last
rows. The probabilities within the transition matrix P are given by the ones
below.

Population Shifts from i to i+ j (j ≥ 0) Mutants: In the case in which
the number of mutants in the population is increasing by more than one in one
time step, the probability of a population of N individuals going from a state of
i mutants to i + j mutants is:

pi,i+j =
r

i∑

k=1

τk

r
i∑

k=1

τk +
N∑

i+1

τk

(
N

j

)

⎛

⎜
⎜
⎜
⎝

p
N∑

k=i+1

βk

N

⎞

⎟
⎟
⎟
⎠

j ⎛

⎜
⎜
⎜
⎝

N − p
N∑

k=i+1

βk

N

⎞

⎟
⎟
⎟
⎠

N−j

(4)

where p is the probability of an individual being chosen to speak. This is con-
stant for all N individuals in the population but is appropriately weighted by
talkativity τ .

Population Shifts from i to i− j (j ≥ 0) Mutants: In the case in which
the number of mutants in the population is decreasing by more than one in one
time step, the probability of a population of N individuals going from i mutants
to ij mutants, where j ≥ 0, is:

pi,i−j =

N∑

k=i+1

τk

r
i∑

k=1

τk +
N∑

i+1

τk

(
N

j

)

⎛

⎜
⎜
⎜
⎝

p
i∑

k=1

βk

N

⎞

⎟
⎟
⎟
⎠

j ⎛

⎜
⎜
⎜
⎝

N − p
i∑

k=1

βk

N

⎞

⎟
⎟
⎟
⎠

N−j

(5)

Population State Does Not Shift: We consider the final case in which
the number of mutants remains unchanged. The initial and final state of the
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population is i mutants. The general form of pi,i is given by

pi,i = 1 −
N−i∑

j=1

pi,i+j −
i∑

j=1

pi,i−j (6)

A few key elements of the transition matrix P (3) include:

p1,0 =

N∑

k=2

τk

rτ1 +
N∑

k=2

τk

(pβ1)(
N − pβ1

N
)N−1 (7)

p1,1 = 1 −
N−1∑

j=1

p1,1+j − p1,0 (8)

p1,N =
rτ1

rτ1 +
N∑

k=2

τk

⎛

⎜
⎜
⎜
⎝

p
N∑

k=2

βk

N

⎞

⎟
⎟
⎟
⎠

N−1

(

N − p
N∑

k=2

βk

)

(9)

pN−1,N =
r
N−1∑

k=1

τk

r
N−1∑

k=1

τk + τN

(pβN )
(

N − pβN

N

)N−1

(10)

P is a transition matrix for an absorbing Markov chain and can be written
in canonical form where the transient states precede the absorbing states [12].
We rearrange the horizontal and vertical indices to {N − 1, 1, ..., N − 2, 0, N}.
The canonical form of P is

S =
(

Q R
0 I

)

S(N+1)×(N+1) =

⎡

⎢
⎢
⎢
⎢
⎣

pN−1,N−1 pN−1,1 ... ... ... ... pN−1,0 pN−1,N
p1,N−1 p1,1 p1,2 p1,3 ... p1,N−2 p1,0 p1,N

...
. . . . . . . . . . . . . . . . . .

...
...

. . . . . . . . . . . . . . . . . .
...

pN−2,N−1 ... ... ... ... pN−2,N−2 pN−2,0 pN−2,N
0 0 ... ... ... 0 1 0
0 0 ... ... ... 0 0 1

⎤

⎥
⎥
⎥
⎥
⎦

Then, the matrices Q and R are:

Q(N−1)×(N−1) =

⎡

⎢
⎢
⎣

pN−1,N−1 pN−1,1 ... ... ... ...
p1,N−1 p1,1 p1,2 p1,3 ... p1,N−2

...
. . . . . . . . . . . .

...
...

. . . . . . . . . . . .
...

pN−2,N−1 ... ... ... ... pN−2,N−2

⎤

⎥
⎥
⎦
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R(N−1)×2 =

⎡

⎣

pN−1,0 pN−1,N
p1,0 p1,N

. . .
...

pN−2,0 pN−2,N

⎤

⎦

To obtain the fundamental matrix M(N−1)×(N−1), we must invert the
I(N−1) − Q(N−1)×(N−1) matrix:

I(N−1) − Q(N−1)×(N−1) =

⎡

⎢
⎢
⎢
⎣

1−pN−1,N−1 −pN−1,1 ... ... ... ...
−p1,N−1 1−p1,1 −p1,2 −p1,3 ... −p1,N−2

...
. . . . . . . . . . . .

...
...

. . . . . . . . . . . .
...−pN−2,N−1 ... ... ... ... 1−pN−2,N−2

⎤

⎥
⎥
⎥
⎦

M(N−1)×(N−1) = [I(N−1) − Q(N−1)×(N−1)]−1

=

⎡

⎢
⎢
⎢
⎣

1−pN−1,N−1 −pN−1,1 ... ... ... ...
−p1,N−1 1−p1,1 −p1,2 −p1,3 ... −p1,N−2

...
. . . . . . . . . . . .

...
...

. . . . . . . . . . . .
...−pN−2,N−1 ... ... ... ... 1−pN−2,N−2

⎤

⎥
⎥
⎥
⎦

−1

B is the absorption probability matrix, a t by q matrix with entries bij where
t is the number of transient states (N − 1) and q is the number of absorbing
states (two; absorbing states are i = 0 and i = N).

B(N−1)×2 = M(N−1)×(N−1)R(N−1)×2

=

⎡

⎢
⎢
⎢
⎣

1−pN−1,N−1 −pN−1,1 ... ... ... ...
−p1,N−1 1−p1,1 −p1,2 −p1,3 ... −p1,N−2

...
. . . . . . . . . . . .

...
...

. . . . . . . . . . . .
...−pN−2,N−1 ... ... ... ... 1−pN−2,N−2

⎤

⎥
⎥
⎥
⎦

−1 ⎡

⎢
⎢
⎣

pN−1,0 pN−1,N
p1,0 p1,N

...
...

...
...

pN−2,0 pN−2,N

⎤

⎥
⎥
⎦

We examine fixation probability as the probability of beginning with one
mutant and resulting in N mutants. Thus, the absorption probability that rep-
resents fixation, the probability of interest, is b1,N .

For a well-mixed population, having set up the transition matrix Q in canon-
ical form, we find the fixation probability b1,N as the entry in the second row
and second column of the matrix MR. We go on to simulate this for well-mixed
populations and extend the result to birth-death communication as per the con-
straints of our model on Barabási-Albert graphs.

We simulate the birth-death process with one-to-many communication on
a Barabási-Albert graph of size N = 100 nodes and an average of k = 16
connections for each node. This choice of illustrative parameters was informed
by a recent study revealing that on average, Americans have sixteen friends, each
with whom they would willingly communicate in some capacity [13].
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2.3 Simulations on a Well-Mixed Population

For simulations on a well-mixed population, we studied fixation probability of
the mutated message given that the population begins with only one mutant. All
talkativities and belief probabilities were generated as random number vectors.
We examine the trend between talkativity or belief probability of the original
mutant and the likelihood of its fixation. The percentage of simulations that
reached fixation provides an indication of the fixation probability with respect
to the talkativity and the belief probability of the initial mutant.

2.4 Simulations on a Barabási-Albert Graph

For simulations on a Barabási-Albert (BA) graph, we study the effect of talkativ-
ity and belief probability on the percentage of simulations in which the mutated
message spread to at least one additional node. Fixation is fairly unlikely on a BA
graph given the added stochastic noise and the probabilistic barriers created by
the existence or lack of connection between two nodes. Thus, we chose to study
the reduced case of simulations in which the mutated message is spread to at
least one other node. The percentage of simulations that involved the mutation
spreading to at least one other individual provides an indication of the fixation
probability with respect to the talkativity and belief probability of the initial
mutant.

3 Discussion

The model offers an understanding of how word-of-mouth information propaga-
tion, the most common mechanism of information spread [14], works in human
networks. Specifically, two significant factors, talkativity and belief probability,
that affect the likelihood of information spread are incorporated to understand
the stochastic barriers a message must overcome to fixate in a population. The
fixation probability of mutated messages in different population structures with
respect to the talkativity and the belief probability of the initial mutant illu-
minates several important trends. In a well-mixed population, levels of fixation
increase near-linearly with the level of talkativity of the initial mutant (corre-
lation ρ = 0.96) (Fig. 2a). This is an intuitive result, as an initial mutant who
is more talkative is more likely to spread the mutated information, contribut-
ing to a greater likelihood of fixation. Decreasing levels of belief probability of
the initial mutant (ρ = −0.74) correspond to decreasing fixation probabilities
(Fig. 2b). One explanation for this trend is that if the initial mutant is more
likely to believe information, particularly the non-mutated message, its mutated
information has a reduced probability of spreading or fixating. Nevertheless, this
explanation may not manifest in reality, as belief probability likely depends on
the content of the information, while β in our case is independent of the message.
Thus, another parameter might be necessary to explain this trend.
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Fig. 2. Simulations of fixation of the mutated message in an unstructured, well-mixed
population of N = 100 individuals at incremental values of talkativity and belief prob-
ability of the initial mutant. In (a), the percentage of fixation of the mutated message is
measured against incremental τ values of talkativity. For each τ , 100 simulations were
run, each with 105 time steps. In (b), the percentage of fixation of the mutated message
is measured against incremental β values of the belief probability of the initial mutant.
As with talkativity, 100 simulations were run for each x value of belief probability, each
with 105 time steps. Smooth scatter lines simply connect consecutive points and do
not imply any curvature or functional form of the relationship between outcome and
parameters.
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Fig. 3. Simulations of mutation spread on a BA graph of N = 100 individuals at
incremental values of talkativity and belief probability of the initial mutant. In (a), the
percentage of mutation spread is measured against incremental τ values of talkativity.
At each τ , 100 simulations were run, each with 105 time steps. In (b), the percentage of
mutation spread is measured against incremental x values of the belief probability of the
initial mutant. As with talkativity, 100 simulations were run for each β value of belief
probability, each with 105 time steps. Smooth scatter lines simply connect consecutive
points and do not imply any curvature or functional form of the relationship between
outcome and parameters.
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Given the convoluted nature of the BA graph generated for Fig. 3a and 3b,
fixation was unlikely because of added stochastic barriers, such as the proba-
bility that two nodes are connected, thereby reducing the available number of
possible channels of communication. However, a weaker trend was observed in
the percentage of mutation spread against talkativity (ρ = 0.61) and against
belief probability (ρ = −0.49) of the initial mutant. Although, theoretically,
talkativity and belief probability still have the same effect on the graph, the
effects are diluted by other random factors intrinsic to the graph such as the
likelihood of successful communication between two nodes. This introduces ran-
domness on the graph, leading to no clear trends with respect to talkativity or
belief probability.

An interesting social implication of the mathematical results of our model is
the sheer difficulty of information becoming common knowledge or “fixating.”
Even in smaller subpopulations, the stochastic nature of information propagation
renders it difficult for information to not only reach every individual, but also for
every individual to believe the information. Due to stochastic barriers presented
by the individuals’ talkativities and belief probabilities, even the most valuable
of information may never reach the individuals it should or would most benefit,
as it cannot surpass the various probabilistic barriers required for successful
transmission. An argument for stochastic barriers proving useful against fake
news and misinformation is equally valid, but can be studied further to determine
the probabilistic factors that enable the spread of misinformation.

A limitation of the present model is that the parameters considered are lim-
ited to talkativity and belief probability. Particularly, β in our model is a node’s
belief probability independent of the content of the message, but in human net-
works, a node’s belief probability likely depends on the information itself.

An additional factor worth consideration is the relationship strength between
two individuals or nodes. While talkativity and belief probability affect the likeli-
hood of two nodes communicating, the strength of their relationship also impacts
how likely any piece of information is communicated. Two individuals with low
talkativity but with a high relationship strength may have a high probability of
fixation despite having low talkativity. This may necessitate the use of a weighted
network in the model. Along these lines, the effect of sub-networks is also signif-
icant. Within smaller networks of nodes, one node’s talkativity and belief proba-
bility may not necessarily be independent of another node’s. Nodes connected in
a sub-network may be of a similar level of talkativity or belief probability. Our
model also does not discriminate between the nature of communication through
word-of-mouth and online platforms.

Understanding how information travels through the massive network that is
humans is valuable for understanding how human beliefs evolve. Insightful con-
tributions made to the existing pool of human knowledge may not necessarily
manifest in beneficial ways due to various stochastic barriers; hence, understand-
ing the degree to which said barriers impede communication can be helpful in
ensuring information achieves its intended targets, particularly on technological
platforms.
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4 Appendix: Assumptions and Derivations

4.1 Model Assumptions:

Communication between nodes is restricted to at most one speaker speaking at a
time. Only one speaker communicates at each time step, regardless of the number
of recipients. Information spread from one node to another is assumed to have a
binary trait of being mutated or non-mutated information. The model assumes
the default state that a population begins with all the nodes believing the non-
mutated information. Any pieces of information that is not the non-mutated
information is considered a mutation. In reality, there are multiple speakers
communicating at once and there may be more nuances as to the classification
of different information.

We model mutation state as a binary state space: there are only two states a
node can be in, either it is mutated or it is non-mutated. A mutated node in this
model is a node that believes the mutated information and non-mutated node
is one that either does not believe the mutated information and/or believes the
non-mutated information.

The two forms of communication we model are one-to-one and one-to-many
communication. In the one-to-many case, we assume that the number of receivers
of a piece of information follows a binomial distribution Bin(N, p). N here is the
total population size in a well-mixed population. On a graph, N reduces to the
number of neighbors of the speaker node. p is the probability of speaking to any
one individual, independently.

4.2 Model Equations and Analytic Results

Analytic Results for One-to-One Communication:

• Population shifts from i to i − 1 mutants:
(1) is the product of the following probabilities:

∑N
k=i+1 τk

r
∑i

k=1 τk +
∑N

k=i+1 τk
(11)

∑i
k=1 βk

N
(12)

(11) is the probability that a non-mutant speaks, weighted by the ratio of its
talkativity to the sum of all individuals’ talkativity and (12) is the probability
that a mutant is the receiver and believes the non-mutated information.

• Population shifts from i to i + 1 mutants:
(2) is the product of the following probabilities:

r
∑i

k=1 τk

r
∑i

k=1 τk +
∑N

k=i+1 τk
(13)
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∑N
k=i+1 βk

N
(14)

(13) is the probability that a mutant speaks, weighted by talkativity, and (14)
is the probability that a non-mutant is the receiver and believes the mutated
information.
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