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Abstract. Objective quality assessment for 3D printing purposes may
be considered as one of the most useful applications of machine vision
in smart monitoring related to the development of the Industry 4.0 solu-
tions. During recent years several approaches have been proposed, assum-
ing observing the side surfaces, mainly based on the analysis of the reg-
ularity of visible patterns, which represent the consecutive printed lay-
ers. These methods, based on the use of general purpose image quality
assessment (IQA) metrics, Hough transform, entropy and texture anal-
ysis, make it possible to classify the printed samples, independently of
the filament’s colour, into low and high quality classes, with the use of
photos or 3D scans of the side surfaces.

The next step of research, investigated in this paper, is the combi-
nation of various proposed approaches to develop a combined metric,
possibly highly correlated with subjective opinions. Since the correla-
tion of single metrics developed mainly for classification is relatively low,
their combination makes it possible to achieve much better results, veri-
fied using an original, newly developed database containing 107 captured
images and 3D scans of the 3D printed surfaces with various colours and
local distortions caused by external factors, together with Mean Opinion
Scores (MOS) gathered from independent observers. Obtained results are
promising and may be a starting point for further research towards the
optimisation of the newly developed metrics for the automatic assess-
ment of the 3D printed surfaces, mainly for aesthetic purposes.

Keywords: Surface quality assessment · 3D printing · Image entropy ·
Depth maps · Image analysis · Additive manufacturing

1 Introduction

Automatic objective quality assessment of 3D printed surfaces is currently one of
themost dynamically developing areas of image analysis for emerging applications.
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Observing a rapid growth of popularity of 3D printing (additive manufacturing),
as well as the availability of affordable high quality cameras, a natural direction of
an extensive research is the application of image analysis methods for smart mon-
itoring of the 3D printing process. The goal of such methods is to make it possible
not only to control the progress of the 3D printing procedure but also to prevent
the occurrence of some minor errors or even abort the manufacturing process in
the case of poor quality of obtained objects.

Vision based assessment of 3D printed surfaces is a natural extension of
research activities related to in situ monitoring of the manufacturing process and
non-destructive evaluation (NDE), which have been reported recently, e.g. with
the use of Optical Coherence Tomography (OCT) for selective laser sintering [12],
spatially resolved acoustic spectroscopy [13] or using top view stereo cameras to
obtain the cloud of 3D points further compared with the model [14].

An interesting approach to video based detection of defects during the 3D
printing process has been presented by Straub [30], where five cameras with
Raspberry Pi units connected using Ethernet cables have been used to capture
the images of the manufactured object. Although two major types of issues -
lack of filament causing the “dry printing” and premature job termination - have
been detected properly, the system’s high sensitivity to changes of environmental
conditions and camera motions has been a major problem in this approach.

Some other approaches to imaging in quality assessment of 3D prints uti-
lize “process signatures” used for fused deposition of ceramic materials [7,8], as
well as the analysis of “road paths” for identification of under- and over-filling
comparing them to the predefined models [5].

Another interesting approach is the non-destructive evaluation based on
ultrasonic imaging and X-rays [34] as well as using electromagnetic methods [2],
however applicable mainly for off-line quality assessment of previously manufac-
tured objects. Some of the recently presented methods require the comparison
with the model of the printed objects [18], whereas some other attempts are
based on previous time-consuming training [3,4,31] or additional filtering [27].
Nevertheless, most of the proposed approaches utilizing machine vision are used
for process monitoring fault detection rather than quality assessment of the
manufactured objects [6]. One of recent examples [36] is the use of fringe pro-
jector with the analysis of small subregions with the use of local point features.
An interesting application for multi-material 3D printing has also been presented
in MultiFab project [28], together with automated positioning system utilizing
the data obtained from the precisely calibrated OCT 3D scanner.

Nevertheless, the main goal of our research is not only the monitoring of
the progress of production and the state of the printing device, but primar-
ily an automatic smart quality assessment of the manufactured object during
the printing process, which is usually relatively long. Such possibility would be
useful for saving the filament, energy and time in case of detection of too low
quality, making it possible to stop the manufacturing process and warn the user
immediately.
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Since in some cases some minor issues may be corrected after the manufac-
turing process, or even during printing in some devices, the classification of the
printed surfaces into two classes representing high and low quality 3D prints
may be insufficient. Despite of encouraging classification results obtained during
recent years, an approach to quality assessment using a continuous scale would
be more demanding. Considering the methodology typically used in general pur-
pose image quality assessment (IQA), where the objective quality metrics should
be highly correlated with subjective opinions, typically expressed as Mean Opin-
ion Score (MOS) values or Differential MOS, a unique dedicated database of 3D
printed samples together with subjective scores has been prepared making it
possible to verify existing methods. Additionally, a novel approach to surface
quality assessment of 3D prints based on the combination of different methods
optimized towards high correlation with subjective scores has been proposed and
verified in the paper, leading to satisfactory results.

2 Methods of Surface Quality Assessment Based on
Classification

Automatic quality assessment of 3D printed surfaces based on the analysis
of images captured by side view cameras can be conducted using different
approaches, including texture analysis, adaptation of general purpose IQA meth-
ods, image entropy, detection of patterns based on Hough transform or the use
of descriptors for gradient analysis based on Histogram of Oriented Gradients
(HOG). Nevertheless, some of the above mentioned approaches can be applied
for the assumed colour of the filament and should be additionally tuned for each
colour, hence their practical usefulness may be limited. The main purpose of
all these methods is related to the classification of the observed surfaces into
two major groups representing high and low quality samples, although in some
experiments additional “moderately low” and “moderately high” quality samples
have been distinguished.

The application of texture analysis is based on the assumption that the statis-
tical distribution of colours of the neighbouring pixels should be similar for the
whole image. Hence, analysing the chosen Haralick features, calculated using
the Grey-Level Co-occurrence Matrix (GLCM), smaller homogeneity may be
observed for lower quality 3D prints [10,19]. Nevertheless, the proposed meth-
ods require time-consuming computations of several GLCMs for various offsets,
used during further analysis of changes of Haralick features. In view of the neces-
sary computational efforts and an average accuracy, this approach has not been
further investigated. This decision results also from the experiments conducted
for the whole developed database, leading to worse results in comparison to the
other methods.

On the other hand, it can be assumed that, due to the regularity of the
patterns representing the consecutive printed layers, observed by a side located
camera, the image entropy should be significantly lower for high quality 3D
prints. Dividing the image into N×N fragments, the local entropy values should
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also be small and similar to each other if there are no visible artifacts, caused
e.g. by the lack of filament or being the result of overfilling. Hence, the variance
of the local entropy should also be low for high quality surfaces. Since the image
entropy is also strongly dependent on the filament’s colour, the combination of
the local entropy and its variance calculated for HSV and RGB colour spaces has
been proposed in the paper [23], leading to colour independent method of quality
assessment. Further improvement of classification results, verified for a larger
database of the flat 3D printed samples, has been obtained due to the use of
entropy based method applied for the depth maps obtained by a 3D scanner [9].

Another possibility of quality evaluation of the 3D printed surfaces is related
to the use of some of the general purpose IQA metrics. As the most univer-
sal widely used metrics, such as e.g. Structural Similarity (SSIM) [32] or Fea-
ture Similarity (FSIM) [35] belong to the group of full-reference methods, which
require the knowledge of the original undistorted image, their direct application
would require the comparison with the model of the printed surface. To overcome
this issue, the division of the image into blocks has been proposed making it pos-
sible to calculate the mutual similarities between the image fragments [24]. In
the presence of geometrical artifacts the mutual similarities for the image frag-
ment containing the distortions decreases noticeably. A similar approach may
be considered for the calculations of correlation, also with the use of the Monte
Carlo method [25] to decrease the amount of computations.

Analysing the structure of the 3D printed flat surface with well visible lay-
ers, being the result of placing the melted filament over the already hardened
polymer, one may expect a high number of straight lines, which should be easily
extracted using the Hough transform with appropriate parameters [11]. Never-
theless, as verified experimentally, its direct application may be troublesome,
especially for some brighter filaments. In spite of this, due to the additional
application of histogram equalization using the well-known CLAHE method,
as well as the random choice of the analysed image regions, a relatively high
classification accuracy (about 0.8) may be achieved [11].

Another investigated approach is the application of the HOG features [17]
calculated locally for various orientations. Since for high quality surface the
luminance changes should be well predictable and the horizontal changes should
be much smaller than the dominating vertical ones, assuming that the sample
is not rotated, the analysis of directional gradients may be a useful tool for the
assumed quality evaluation. A high accuracy of classification, independently of
the colour of the filament, may be achieved using the signed orientations and
4 bins for the calculation of the HOG features, assuming the final classification
using the standard deviation of the HOG features [17].

Although all the previously proposed approaches presented above have been
developed for the classification purposes, it has been assumed that they may be
additionally verified by means of the database containing the subjective qual-
ity scores collected in perceptual experiments. Such results, obtained after the
analysis of the opinions provided by human observers, may be useful for the
optimization purposes to ensure high correlation of the developed metrics with
subjective evaluation, similarly as in general purpose IQA.
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3 The 3D Prints Database

The database containing 107 images of the 3D printed flat surfaces together with
their depth maps and subjective evaluation results, expressed as Mean Opinion
Score (MOS) values, has been prepared with the use of three 3D printers: Prusa
i3, RepRap Pro Ormerod 3 and da Vinci 1.0 Pro 3-in-1. All the samples have
been prepared using the most popular Fused Deposition Modelling (FDM) tech-
nology from 9 different colour ABS (Acrylonitrile Butadiene Styrene) filaments.
In comparison with another popular thermoplastic polymer, namely Polyactic
Acid (PLA), this material is more abrasion resistant but requires higher work-
ing temperature, as its melting point is about 200 ◦C. It is also lightweight and
has good mechanical properties, however its fumes emitted during the printing
process may be toxic [1,29].

Since the quality of the manufactured objects are dependent on many con-
ditions, including the quality of materials used for the construction of the 3D
printer and the quality of the filament, regardless of some independent factors,
the presence of some typical distortions has been forced by changes of tempera-
ture, filament’s delivery speed or configuration parameters of the stepper motors.
All the obtained samples containing various amount of distortions caused mainly
by over- and under-filling, including the presence of cracks, have been indepen-
dently assessed by 92 human observers using the typical scale from 1 (very poor)
to 5 (very good). Additionally the obtained MOS values have been compared
with the previously utilized expert opinions to confirm the correctness of the
obtained results. Some sample images together with MOS values, are presented
in Fig. 1.

MOS = 4.7609 MOS = 3.8222 MOS = 2.2717 MOS = 1.1868

MOS = 4.2444 MOS = 3.0549 MOS = 2.6703 MOS = 1.3261

Fig. 1. Sample representative images of the 3D printed flat surfaces with their average
subjective quality scores.
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The images have been acquired using Sony DSC-HX100V camera with
an automatic white balance, 5 mm focal length and the exposure time 1/125
s without flash, preventing a fixed distance. A distributed illumination has been
used to prevent strong reflections using three lamps. The depth maps have been
obtained as the 1928×1928 pixels 16-bit greyscale images, being the result of the
normalization of the STL files representing the 3D models obtained from the 3D
point clouds. They have been achieved as the result of the 3D scanning process
using the ATOS 3D scanner manufactured by GOM company with the use of
fringe pattern perpendicular to the visible layers on the printed surface [9].

The assumption of an automatic quality evaluation of 3D printed surfaces
discussed in this paper is its high accordance with subjective opinions, similarly
as in general purpose IQA methods, and therefore the proposed approach should
be considered as useful mainly for aesthetic purposes rather than e.g. evaluation
of mechanical properties. Such extension would require the analysis of the 3D
structure of the manufactured object, acquired e.g. using terahertz methods,
and is planned as a part of further research. Another possible extension of the
database, planned in future work, may be an addition of images of the non-planar
objects, where the entropy based methods may be the most suitable.

4 Idea of the Combined Metric

One of the main goals of the general purpose IQA is to obtain the possibly
highest correlation between the objective and subjective quality scores. Unfor-
tunately, single metrics, such as SSIM [32] or much better FSIM [35], usually
require the additional non-linear mapping recommended by the Visual Qual-
ity Experts Group (VQEG) due to the some specific properties of the Human
Visual System (HVS). Since various IQA databases are used for the verifica-
tion and optimization of newly proposed metrics, the parameters of the logistic
function typically used for such mapping may vary for different datasets.

As different general purpose metrics utilize various kinds of image informa-
tions, the idea of combined/hybrid metrics has been proposed by the combi-
nation of three different metrics using their weighted product [20], leading to
a significant increase of the Pearson’s Linear Correlation Coefficient (PLCC) for
raw quality scores without the necessity of non-linear mapping. Such idea has
been extended by the replacement of some metrics by newer ones [21,26], as well
as its application for multiply distorted images [22] and recently by the use of
no-reference metrics [15].

The general form of the combined metric with exponent weights analysed in
the paper can be expressed as

Qcombined =
K∏

i=1

Metricweighti
i , (1)

where K is the number of weighted metrics (originally K = 3 [20,21]).
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As the component metrics, further subjected to optimization of their weights,
all the previously examined methods of quality evaluation of the 3D printed sur-
faces, have been used, particularly those described in Sect. 2. For the additional
verification of the proposed approach, two rank-order correlation coefficients
have been calculated, similarly as typically used in general purpose IQA. Nev-
ertheless, in image quality assessment both these coefficients, namely Spearman
Rank Order Correlation Coefficient (SROCC) and Kendall Rank Order Corre-
lation Coefficient (KROCC), are considered as the measures of the prediction
monotonicity, whereas PLCC measures the prediction accuracy. Sperman’s ρ is
defined as:

ρ = 1 − 6 · ∑ d2i
n · (n2 − 1)

, (2)

where n is the number of images and di is the difference between the position of
the i-th image in two sequences ordered according to subjective and objective
scores, respectively.

Kendall’s τ coefficient is defined as:

τ =
nc − nd

0.5 · n · (n − 1)
, (3)

where nc and nd are the numbers of concordant and discordant, being the posi-
tions of two images in the same two sequences sorted according the subjective
and objective quality scores, respectively.

Both rank-order coefficients are independent of the differences of the per-
ceived and measured quality, since only the order of the sorted images is con-
sidered regardless of the “quality distances” between them, and therefore they
do not require any non-linear mapping functions which would not influence the
monotonicity of the sequences of the quality scores.

5 Analysis of Experimental Verification

To verify the possible increase of the correlation of the objective metrics with
subjective evaluations due to the application of the combined metrics, all corre-
lation coefficients have been calculated firstly for the single methods proposed in
previous papers. Analysing the obtained results, presented in Table 1, the best
results may be achieved using the methods based on the entropy of the depth
map as well as the mutual Feature Similarity calculations. An interesting obser-
vation is that for the HOG based metrics much better PLCC values may be
obtained for the kurtosis of HOG values but rank-order correlations are higher
for standard deviation of HOG originally proposed in [17]. Nevertheless, there is
no single method with the PLCC and SROCC exceeding 0.7 and Kendall’s τ is
slightly higher than 0.5 only for FSIM based metrics.

Considering the results of verification presented in Table 1, additionally illus-
trated by the scatter plots presented in Fig. 2, all further experiments have
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Table 1. Correlation coefficients between the single objective metrics and subjective
quality scores obtained for the developed database.

Method PLCC SROCC KROCC

SSIM - 4 blocks [24] 0.3048 0.3017 0.1938

SSIM - 16 blocks [24] 0.3996 0.4012 0.2746

FSIM - 4 blocks [24] 0.6780 0.6826 0.5114

FSIM - 16 blocks [24] 0.6756 0.6865 0.5195

Colour independent entropy [23] 0.4816 0.4920 0.3480

Global entropy of depth map 0.4820 0.4694 0.3283

Sum of local entropy of depth map 0.6936 0.6674 0.4814

Mixed entropy of depth map + CLAHE [9] 0.6603 0.6547 0.4606

Hough + CLAHE [11] 0.1619 0.3147 0.2365

Standard deviation of HOG [17] 0.4294 0.6053 0.4850

Kurtosis of HOG 0.5075 0.5177 0.3874

Table 2. Correlation coefficients between the optimized combined metrics and subjec-
tive quality scores obtained for the developed database.

Combined methods PLCC SROCC KROCC

FSIM4 and Elocaldepth 0.7575 0.7249 0.5492

FSIM4, Elocaldepth and Hough +

CLAHE [11]

0.8166 0.7960 0.6110

FSIM4, Elocaldepth, Hough +

CLAHE [11] and kurtosis of HOG

0.8353 0.8215 0.6403

FSIM4, EMVhue256 [23], Hough +
CLAHE [11] and kurtosis of HOG

0.8332 0.8332 0.6448

started with the optimization of the combined metric based on FSIM and local
entropy of depth map. Assuming the combined metric based on formula (1)
expressed as

Qcomb2 = FSIMα
4 · Eβ

localdepth , (4)

where FSIM4 is the average mutual Feature Similarity assumed for the division
of the image into 4 blocks, Elocaldepth is the average local entropy of the depth
map assuming its division into 16 blocks as proposed in [9] and the weighting
coefficients α and β have been subjected to optimization leading to the increase
of the PLCC value to 0.7575 (for α = 1.6 and β = −1.2) as presented in Table 2.

During further experiments some other metrics presented above have been
included in the general formula of the combined metric (1) with optimized expo-
nential weights leading to the results presented in Table 2. As can be observed,
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Fig. 2. Scatter plots obtained using selected single metrics and MOS values for 107
samples from the developed database.

the best results have been achieved for the combination of four metrics with
the following respective weighting coefficients: α = 2.9, β = −1.6, γ = −14 and
δ = −1.8, where two latter weighting coefficients should be applied for the met-
ric proposed in [11] and kurtosis of HOG features, respectively. Replacing the
metric based on the entropy of depth maps by the product of the average local
image entropy calculated for the hue component in HSV colour space and its
variance, assuming the division of the image into 256 regions [23], makes it pos-
sible ot increase the SROCC and KROCC values with slightly worse Pearson’s
correlation. The optimized coefficients have been obtained by the unconstrained
non-linear optimization using the MATLAB fminsearch function, based on sim-
plex search method, additionally verified using some gradient-based methods.

To illustrate the advantages of the proposed approach, the scatter plots
illustrating the relationships between the subjective and objective metrics for
107 samples included in the developed database are presented in Figs. 2 and 3.
Observing these plots, higher linearity of the relation between the MOS and
proposed combined metrics can be easily noticed.

Since the calculations of all metrics for a single 1600 × 1600 pixels image
takes less than 2 seconds in MATLAB environment, installed on a PC with
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Fig. 3. Scatter plots obtained using proposed combined metrics and MOS values for
107 samples from the developed database.

Intel i7 processor clocked at 2.8 GHz and 16 GB of RAM, the proposed app-
roach should be fast enough also for in situ quality monitoring of the 3D prints
during a relatively slow typical manufacturing process, even with the use of hard-
ware solutions with lower computational efficiency. Due to the independence of
computations performed for each of the individual metrics, some parallelization
possibilities of calculations may be considered as well.

Although the verification of the proposed methods has been conducted off-
line, the only limitation of the presented approach for on-line applications is
related to the necessity of acquisition of depth maps in addition to images cap-
tured by side located cameras. In the case of removing the element based on
entropy of the depth map for the optimized weights of three other metrics, the
PLCC decreases to 0.7877 with SROCC = 0.7854 and KROCC = 0.5898. Nev-
ertheless, similar solutions based on projection on fringe patterns have also been
considered by some other researchers [36]. An alternative solution is the use of
entropy based method analysed in [23] for images captured by camera calculated
in HSV colour space, leading to even better rank-order correlations, as shown in
Table 2.
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6 Conclusions and Future Work

Application of the proposed combined metrics makes it possible to increase the
correlation with subjective evaluation of 3D printed surfaces significantly, from
below 0.7 obtained for the best single metric to over 0.83 achieved for the best
combination of four methods with optimized weighting coefficients. In compar-
ison to the use of combined metrics for general purpose IQA [15,20,21,26], the
increase of the correlation coefficients is much larger, partially due to a high
diversity of the combined metrics, which utilize different methods, such as Fea-
ture Similarity, entropy, Hough transform and HOG descriptors.

The development of the database of 3D prints containing the results of sub-
jective evaluation opens some new possibilities for the development of even better
metrics, optimized in view of correlation with aesthetic evaluations. Neverthe-
less, an interesting direction of our future research may also be the extension
of the database by the results of some other non-destructive evaluation meth-
ods, e.g. using terahertz technology, to obtain full information related to the
3D structure of the manufactured objects, also for off-line quality inspection in
view of mechanical properties. Another issue, which is worth investigating, is
the extension of the dataset towards further development of methods useful for
evaluation of non-planar surfaces, e.g. based on entropy and mutual similarity
of image regions.

An interesting overview of various approaches to quality control in seven dif-
ferent technologies of 3D printing can be found in [16], whereas some other open
challenges are specified in [33], where it has been stated that “the development
of 3D printing technologies is still underway, meaning that there are multiple
alternatives without an absolute rule for choosing among them”. In view of these
needs, the proposed approach to combination of multiple methods of surface
quality assessment can be considered as one of the potentially useful solutions
for emerging applications related to video based quality control in 3D printing.
Such methodology may also be further adapted for some other 3D printing meth-
ods and materials than the most popular Fused Deposition Modelling with the
use of thermoplastic polymer filaments, such as PLA or ABS.
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