Skip to main content

Brain Activation in Virtual Reality for Attention Guidance

  • Conference paper
  • First Online:
Learning and Collaboration Technologies. Human and Technology Ecosystems (HCII 2020)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 12206))

Included in the following conference series:

Abstract

Virtual Reality (VR) not only offers great opportunities in terms of entertainment, it is also widely applicable in the field of attention guidance, medicine and psychology. The distinction between VR and ordinary media is the 360\(^\circ \) - also known as omnidirectional - environment. When applying the option of an omnidirectional platform with auditory as well as visual actions, the focus on the right story line within VR is crucial. In order to analyze whether attention guidance in VR activates the same brain regions as in the real world, data of both topographical brain views must be compared. To do so, functional near-infrared spectroscopy (fNIRS), a brain imaging technology, is being utilized. fNIRS is a non-invasive neuroimaging technique, which measures brain oxygenation and by that identifies brain activity. The fNIRS method offers a fast and convenient application and is easily adaptable to the field of VR. In this experiment, the brain activity of 23 participants was examined under two scenarios. The first scenario required the location of click noises when being present in the real world, while the second scenario demanded the same in the virtual reality. The environment of both settings - in the real world as well as in the virtual world - were identical. Each brain picture was analyzed on the basis of a within-subject design. Therefore, all participants were required to experience both settings while wearing fNIRS in order to compare similarities and differences of the recordings. Once all 46 recordings were allocated and broken down by milliseconds, a cortex view through Oxysoft - a software that analyzes and evaluates NIRS recordings - was generated. Despite fNIRS limited recording depth, increased brain activity was detected during the subject’s click orientation. The greatest disparity between the resting phase and the stimulation was visible in the temporal as well as the parietal lobe. Findings also showed that in spite of the stimulated brain regions, the hemoglobin level remained the same in both environments, the real world and the virtual world.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bucher, J.: Storytelling for Virtual Reality: Methods and Principles for Crafting Immersive Narratives. Taylor & Francis Group, New York (2017)

    Book  Google Scholar 

  2. Smith, W.S., Tadmor, Y.: Nonblurred regions show priority for gaze directon over spatical blur. Q. J. Exp. Psychol. (2013). https://doi.org/10.1080/17440218.2012722659

    Article  Google Scholar 

  3. Hata, H., Koike, H., Sato, Y.: Visual guidance with unnoticed blur effect. In: Proceedings of the International Working Conference on Advanced Visual Interfaces - AVI 2016. ACM Press, New York (2016)

    Google Scholar 

  4. Cole, F., DeCarlo, D., Finkelstein, A., Kin, K., Morley, K., Santella, A.: Directing gaze in 3D models with stylized focus. In: Proceedings of the 17th Europgraphics Conference on Rendering Techniques (2006). https://doi.org/10.2312/egwr/egsr06/377-387

  5. Rothe, S., Buschek, D., Hussmann, H.: Guidance in cinematic virtual reality-taxonomy, research status and challenges. Multimodal Technol. Interact. 3, 19 (2019). https://doi.org/10.3390/mti3010019

    Article  Google Scholar 

  6. Subramanian, R., Shankar, D., Sebe, N., Melcher, D.: Emotion modulates eye movement patterns and subsequent memory for the gist and details of movie scenes. J. Vis. 14, 31 (2014). https://doi.org/10.1167/14.3.31

    Article  Google Scholar 

  7. Dorr, M., Vig, E., Barth, E.: Eye movement prediction and variability on natural video data sets. Vis. Cogn. 20 (2012). https://doi.org/10.1080/13506285.2012.667456

  8. Tse, A., Jennet, C., Moore, J., Watson, Z., Rigby, J., Cox, A.L.: Was i there? In: Proceedings of the 2017 CHI Conference Extended Abstracts on Human Factors in Computing Systems. ACM Press, New York (2017)

    Google Scholar 

  9. MacQuarrie, A., Steed, A.: Cinematic virtual reality: evaluating the effect of display type on the viewing experience for panoramic video. In: Proceedings of the 2017 IEEE Virtual Reality (VR), Los Angeles, CA, USA (2017)

    Google Scholar 

  10. Sheikh, A., Brown, A., Watson, Z., Evans, M.: Directing attention in 360-degree video. In: IBC 2016 Conference (2016)

    Google Scholar 

  11. Rothe, S., Hussmann, H., Allary, M.: Diegetic cues for guiding the viewer in cinematic virtual reality. In: Proceedings of the 23rd ACM Symposium (2017). https://doi.org/10.1145/3139131.3143421

  12. Bohil, C., Alicea, B., Biocca, F.: Virtual reality in neuroscience research and therapy. Nat. Rev. Neurosci. 12, 752–62 (2011). https://doi.org/10.1038/nrn3122

    Article  Google Scholar 

  13. Seraglia, B., Gamberini, L., Priftis, K., Scatturin, P., Martinelli, M., Cutini, S.: An exploratory fNIRS study with immersive virtual reality: a new method for technical implementation. Front. Hum. Neurosci. 5, 176 (2011). https://doi.org/10.3389/fnhum.2011.00176

    Article  Google Scholar 

  14. Peck, E.M., Afergan, D., Yuksel, B.F., Lalooses, F., Jacob, R.J.K.: Using fNIRS to measure mental workload in the real world. In: Fairclough, S.H., Gilleade, K. (eds.) Advances in Physiological Computing. HIS, pp. 117–139. Springer, London (2014). https://doi.org/10.1007/978-1-4471-6392-3_6

    Chapter  Google Scholar 

  15. Cansiz, Y., Tokel, S.T.: Effects of way finding affordances on usability of virtual world environments in terms of users’ satisfaction, performance, and mental workload: examination by eye-tracking and fNIR. In: Amiel, T., Wilson, B. (eds.) Proceedings of EdMedia + Innovate Learning 2012, pp. 1073–1079. Association for the Advancement of Computing in Education (AACE), Waynesville (2012)

    Google Scholar 

  16. Campbell, Z., Zakzanis, K., Jovanovski, D., Joordens, S., Mraz, R., Graham, S.J.: Utilizing virtual reality to improve the ecological validity of clinical neuropsychology: an fMRI case study elucidating the neural basis of planning by comparing the Tower of London with a three-dimensional navigation task. Appl. Neuropsychol. 16, 295–306 (2009)

    Article  Google Scholar 

  17. Perani, D., et al.: Different brain correlates for watching real and virtual hand actions. Neuroimage 14, 749–758 (2001)

    Article  Google Scholar 

  18. Ulsamer, P., Pfeffel, K., Müller, N.H.: Indoor navigation through storytelling in virtual reality. In: Zaphiris, P., Ioannou, A. (eds.) HCII 2019. LNCS, vol. 11591, pp. 230–239. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-21817-1_18

    Chapter  Google Scholar 

  19. Boecker, M., Schroeter, M.L.: Signal-und bildgebende Verfahren: Nahinfrarot-Spektroskopie. In: Gauggel, S., Hermann, M. (eds.) Handbuch der Neuro-und Biopsychologie, pp. 211–219. Hogrefe, Goettingen (2008)

    Google Scholar 

  20. Kober, S., Wood, G., Neuper, C.: Measuring brain activation during spatial navigation in virtual reality: a combined EEG-NIRS study. In: Virtual Environments: Developments, Applications and Challenges, pp. 1–24 (2013)

    Google Scholar 

  21. Siegel, A.W., White, S.H.: The development of spatial representations of large-scale environments. Adv. Child Dev. Behav. 10, 9–55 (1975). https://doi.org/10.1016/s0065-2407(08)60007-5. PMID: 1101663

    Article  Google Scholar 

  22. Janzen, G., van Turennout, M.: Selective neural representation of objects relevant for navigation. Nat. Neurosci. 7, 673–677 (2004). https://doi.org/10.1038/nn1257

    Article  Google Scholar 

  23. Maguire, E.A., Burgess, N., Donnett, J.G., Frackowiak, R.S., Frith, C.D., O’Keefe, J.: Knowing where and getting there: a human navigation network. Science 280(5365), 921–4 (1998)

    Article  Google Scholar 

  24. Molholm, S., Martinez, A., Ritter, W., Javitt, D.C., Foxe, J.J.: The neural circuitry of pre-attentive auditory change-detection: an fMRI study of pitch and duration mismatch negativity generators. Cereb. Cortex 15, 545–551 (2005)

    Article  Google Scholar 

  25. Wolbers, T., et al.: Neural foundations of emerging route knowledge in complex spatial environments. Cogn. Brain. Res. 21(3), 401–411 (2004)

    Article  Google Scholar 

  26. Grön, G., Wunderlich, A., Spitzer, M., et al.: Brain activation during human navigation: gender-different neural networks as substrate of performance. Nat. Neurosci. 3, 404–408 (2000). https://doi.org/10.1038/73980

    Article  Google Scholar 

  27. Scholkmann, F., Kleiser, S., Metz, A.J., Zimmermann, R., Pavia, J.M., Wolf, U., et al.: A review on continuous wave functional near-infrared spectroscopy and imaging instrumentation and methodology. Neuroimage 85, 6–27 (2014). https://doi.org/10.1016/j.neuroimage.2013.05.004

    Article  Google Scholar 

  28. Siegel, A.M., Marota, J.J.A., Boas, D.A.: Design and evaluation of a continuous-wave diffuse optical tomography system. Opt. Express 4, 287–298 (1999). https://doi.org/10.1364/OE.4.000287

    Article  Google Scholar 

  29. Weiskopf, N.: Real-time fMRI and its application to neurofeedback. NeuroImage 62, 682–692 (2012)

    Article  Google Scholar 

  30. Kamran, M.A., Mannann, M.M.N., Jeong, M.Y.: Differential path-length factor’s effect on the characterization of brain’s hemodynamic response function: a functional near-infrared study. Front. Neuroinform. 12, 37 (2018). https://doi.org/10.3389/fninf.2018.00037

    Article  Google Scholar 

  31. Duncan, A., Meek, J., Clemence, M., et al.: Measurement of cranial optical path length as a function of age using phase resolved near infrared spectroscopy. Pediatr. Res. 39, 889–894 (1996). https://doi.org/10.1203/00006450-199605000-00025

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philipp Ulsamer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ulsamer, P., Pfeffel, K., Müller, N.H. (2020). Brain Activation in Virtual Reality for Attention Guidance. In: Zaphiris, P., Ioannou, A. (eds) Learning and Collaboration Technologies. Human and Technology Ecosystems. HCII 2020. Lecture Notes in Computer Science(), vol 12206. Springer, Cham. https://doi.org/10.1007/978-3-030-50506-6_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-50506-6_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-50505-9

  • Online ISBN: 978-3-030-50506-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics