Abstract
The optic disc (OD) and the fovea are relevant landmarks in fundus images. Their localization and segmentation can facilitate the detection of some retinal lesions and the assessment of their importance to the severity and progression of several eye disorders. Distinct methodologies have been developed for detecting these structures, mainly based on color and vascular information. The methodology herein described combines the entropy of the vessel directions with the image intensities for finding the OD center and uses a sliding band filter for segmenting the OD. The fovea center corresponds to the darkest point inside a region defined from the OD position and radius. Both the Messidor and the IDRiD datasets are used for evaluating the performance of the developed methods. In the first one, a success rate of 99.56% and 100.00% are achieved for OD and fovea localization. Regarding the OD segmentation, the mean Jaccard index and Dice’s coefficient obtained are 0.87 and 0.94, respectively. The proposed methods are also amongst the top-3 performing solutions submitted to the IDRiD online challenge.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Mendonça, A.M., Sousa, A., Mendonça, L., Campilho, A.: Automatic localization of the optic disc by combining vascular and intensity information. Comput. Med. Imaging Graph. 37(5–6), 409–417 (2013). https://doi.org/10.1016/j.compmedimag.2013.04.004
Jelinek, H., Cree, M.: Automated Image Detection of Retinal Pathology, 1st edn. CRC Press, Boca Raton (2009)
Aquino, A., Gegúndez-Arias, M., Marin, D.: Automated optic disc detection in retinal images of patients with diabetic retinopathy and risk of macular edema. Int. J. Biol. Life Sci. 8(2), 87–92 (2012). https://doi.org/10.5281/zenodo.1085129
Youssif, A., Ghalwash, A., Ghoneim, A.: Optic disc detection from normalized digital fundus images by means of a vessels’ direction matched filter. IEEE Trans. Med. Imaging 27(1), 11–18 (2008). https://doi.org/10.1109/TMI.2007.900326
Dashtbozorg, B., Mendonça, A.M., Campilho, A.: Optic disc segmentation using the sliding band filter. Comput. Biol. Med. 56, 1–12 (2015). https://doi.org/10.1016/j.compbiomed.2014.10.009
Medhi, J., Dandapat, S.: An effective fovea detection and automatic assessment of diabetic maculopathy in color fundus images. Comput. Biol. Med. 74, 30–44 (2016). https://doi.org/10.1016/j.compbiomed.2016.04.007
Mendonça, A.M., Campilho, A.: Segmentation of retinal blood vessels by combining the detection of centerlines and morphological reconstruction. IEEE Trans. Med. Imaging 25(9), 1200–1213 (2006). https://doi.org/10.1109/TMI.2006.879955
Pereira, C.S., Mendonça, A.M., Campilho, A.: Evaluation of contrast enhancement filters for lung nodule detection. In: Kamel, M., Campilho, A. (eds.) ICIAR 2007. LNCS, vol. 4633, pp. 878–888. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74260-9_78
Esteves, T., Quelhas, P., Mendonça, A.M., Campilho, A.: Gradient convergence filters and a phase congruency approach for in vivo cell nuclei detection. Mach. Vis. Appl. 23(4), 623–638 (2012). https://doi.org/10.1007/s00138-012-0407-7
Jonas, R., et al.: Optic disc - Fovea distance, axial length and parapapillary zones. The Beijing eye study 2011. PLoS ONE 10(9), 1–14 (2015). https://doi.org/10.1371/journal.pone.0138701
Rohrschneider, K.: Determination of the location of the fovea on the fundus. Invest. Ophthalmol. Vis. Sci. 45(9), 3257–3258 (2004). https://doi.org/10.1167/iovs.03-1157
Decencière, E., Zhang, X., Cazuguel, G., Lay, B., Cochener, B., Trone, C., et al.: Feedback on a publicly distributed image database: the Messidor database. Image Anal. Stereol. 33(3), 231–234 (2014). https://doi.org/10.5566/ias.1155
Porwal, P., et al.: IDRiD: diabetic retinopathy - segmentation and grading challenge. Med. Image Anal. 59, 101561 (2020). https://doi.org/10.1016/j.media.2019.101561
Araújo, T., Aresta, G., Galdran, A., Costa, P., Mendonça, A.M., Campilho, A.: UOLO - automatic object detection and segmentation in biomedical images. In: Stoyanov, D., et al. (eds.) DLMIA/ML-CDS -2018. LNCS, vol. 11045, pp. 165–173. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00889-5_19
Kamble, R., Kokare, M., Deshmukh, G., Hussin, F., Mériaudeau, F.: Localization of optic disc and fovea in retinal images using intensity based line scanning analysis. Comput. Biol. Med. 87, 382–396 (2017). https://doi.org/10.1016/j.compbiomed.2017.04.016
Aquino, A., Gegúndez-Arias, M., Marin, D.: Detecting the optic disc boundary in digital fundus images using morphological, edge detection, and feature extraction techniques. IEEE Trans. Med. Imaging 29(11), 1860–1869 (2010). https://doi.org/10.1109/TMI.2010.2053042
Al-Bander, B., Al-Nuaimy, W., Williams, B., Zheng, Y.: Multiscale sequential convolutional neural networks for simultaneous detection of fovea and optic disc. Biomed. Signal Process. Control 40, 91–101 (2018). https://doi.org/10.1016/j.bspc.2017.09.008
Aquino, A.: Establishing the macular grading grid by means of fovea centre detection using anatomical-based and visual-based features. Comput. Biol. Med. 55, 61–73 (2014). https://doi.org/10.1016/j.compbiomed.2014.10.007
Gegundez-Arias, M., Marin, D., Bravo, J., Suero, A.: Locating the fovea center position in digital fundus images using thresholding and feature extraction techniques. Comput. Med. Imaging Graph. 37(5–6), 386–393 (2013). https://doi.org/10.1016/j.compmedimag.2013.06.002
Dai, B., Wu, X., Bu, W.: Optic disc segmentation based on variational model with multiple energies. Pattern Recogn. 64, 226–235 (2017). https://doi.org/10.1016/j.patcog.2016.11.017
Roychowdhury, S., Koozekanani, D., Kuchinka, S., Parhi, K.: Optic disc boundary and vessel origin segmentation of fundus images. IEEE J. Biomed. Health Inf. 20(6), 1562–1574 (2016). https://doi.org/10.1109/JBHI.2015.2473159
Morales, S., Naranjo, V., Angulo, J., Alcañiz, M.: Automatic detection of optic disc based on PCA and mathematical morphology. IEEE Trans. Med. Imaging 32(4), 786–796 (2013). https://doi.org/10.1109/TMI.2013.2238244
Acknowledgments
This work is financed by the ERDF – European Regional Development Fund through the Operational Programme for Competitiveness and Internationalisation – COMPETE 2020 Programme, and by National Funds through the FCT – Fundação para a Ciência e a Tecnologia within project.
CMUP-ERI/TIC/0028/2014.
Tânia Melo is funded by the FCT grant SFRH/BD/145329/2019. Teresa Araújo is funded by the FCT grant SFRH/BD/122365/2016.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Mendonça, A.M., Melo, T., Araújo, T., Campilho, A. (2020). Optic Disc and Fovea Detection in Color Eye Fundus Images. In: Campilho, A., Karray, F., Wang, Z. (eds) Image Analysis and Recognition. ICIAR 2020. Lecture Notes in Computer Science(), vol 12132. Springer, Cham. https://doi.org/10.1007/978-3-030-50516-5_29
Download citation
DOI: https://doi.org/10.1007/978-3-030-50516-5_29
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-50515-8
Online ISBN: 978-3-030-50516-5
eBook Packages: Computer ScienceComputer Science (R0)