Skip to main content

Gender Differences in Simulation Sickness in Static vs. Moving Platform VR Automated Driving Simulation

  • Conference paper
  • First Online:
HCI in Mobility, Transport, and Automotive Systems. Automated Driving and In-Vehicle Experience Design (HCII 2020)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 12212))

Included in the following conference series:

Abstract

Simulation sickness is a condition of physiological discomfort felt during or after exposure to any virtual environment. An immersive virtual environment can be accessed through a head mounted display, which provides the user with an entrance to the virtual world. The onset of simulation sickness is one of the main disadvantages of virtual reality (VR) systems. The study presented in this paper aims to expand the knowledge on how gender affects simulation sickness in an innovative VR driving environment. A between-subjects design (n = 62) was conducted to investigate the effect of gender and motion on simulation sickness and physiological responses induced by a fully automated urban virtual driving simulation . The results showed that women significantly experienced more simulation sickness while using the driving simulation compared to men. Furthermore, there was no significant difference between the static and moving platform conditions regarding simulation sickness onset. These findings indicate that there is a real separation of how much simulation sickness has an effect on the users depending on their gender. Therefore, female users should be more cautious while using an automated VR driving simulations with a moving platform.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aykent, B., Merienne, F., Guillet, C., Paillot, D., Kemeny, A.: Motion sickness evaluation and comparison for a static driving simulator and a dynamic driving simulator. Proc. Inst. Mech. Eng. Part D: J. Automob. Eng. 228(7), 818–829 (2014)

    Article  Google Scholar 

  2. Aykent, B., Merienne, F., Paillot, D., Kemeny, A.: Influence of inertial stimulus on visuo-vestibular cues conflict for lateral dynamics at driving simulators (2013)

    Google Scholar 

  3. Barrett, J.: Side effects of virtual environments: a review of the literature. Technical report, Defence Science and Technology Organisation Canberra, Australia (2004)

    Google Scholar 

  4. Biocca, F.: Will simulation sickness slow down the diffusion of virtual environment technology? Presence: Teleoper. Virtual Environ. 1(3), 334–343 (1992). https://doi.org/10.1162/pres.1992.1.3.334

    Article  Google Scholar 

  5. Boyd, D.: Is the oculus rift sexist? Quartz (2014)

    Google Scholar 

  6. Brooks, J.O., et al.: Simulator sickness during driving simulation studies. Accid. Anal. Prev. 42(3), 788–796 (2010)

    Article  Google Scholar 

  7. Casali, J.G., Frank, L.H.: Perceptual distortion and its consequences in vehicular simulation: basic theory and incidence of simulator sickness. Transp. Res. Rec. 1059, 57–65 (1986)

    Google Scholar 

  8. Cobb, S.V., Nichols, S., Ramsey, A., Wilson, J.R.: Virtual reality-induced symptoms and effects (VRISE). Presence: Teleoper. Virtual Environ. 8(2), 169–186 (1999)

    Article  Google Scholar 

  9. Coluccia, E., Louse, G.: Gender differences in spatial orientation: a review. J. Environ. Psychol. 24(3), 329–340 (2004)

    Article  Google Scholar 

  10. Curry, R., Artz, B., Cathey, L., Grant, P., Greenberg, J.: Kennedy SSQ results: fixed vs. motion-base ford simulators, pp. 289–300, January 2002

    Google Scholar 

  11. Czerwinski, M., Tan, D.S., Robertson, G.G.: Women take a wider view. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 195–202 (2002)

    Google Scholar 

  12. Dahlman, J., Sjörs, A., Ledin, T., Falkmer, T.: Could sound be used as a strategy for reducing symptoms of perceived motion sickness? J. Neuroeng. Rehabil. 5(1), 35 (2008)

    Article  Google Scholar 

  13. Dahlman, J., Sjörs, A., Lindström, J., Ledin, T., Falkmer, T.: Performance and autonomic responses during motion sickness. Hum. Factors 51(1), 56–66 (2009)

    Article  Google Scholar 

  14. Dennison, M.S., Wisti, A.Z., D’Zmura, M.: Use of physiological signals to predict cybersickness. Displays 44, 42–52 (2016)

    Article  Google Scholar 

  15. Dong, X., Stoffregen, T.A.: Postural activity and motion sickness among drivers and passengers in a console video game. In: Proceedings of the Human Factors and Ergonomics Society Annual Meeting, vol. 54, pp. 1340–1344. SAGE Publications, Los Angeles (2010)

    Google Scholar 

  16. D’Amour, S., Bos, J.E., Keshavarz, B.: The efficacy of airflow and seat vibration on reducing visually induced motion sickness. Exp. Brain Res. 235(9), 2811–2820 (2017)

    Article  Google Scholar 

  17. Garcia, A., Baldwin, C., Dworsky, M.: Gender differences in simulator sickness in fixed-versus rotating-base driving simulator. In: Proceedings of the Human Factors and Ergonomics Society Annual Meeting, vol. 54, pp. 1551–1555. SAGE Publications, Los Angeles (2010)

    Google Scholar 

  18. Gavgani, A.M., Nesbitt, K.V., Blackmore, K.L., Nalivaiko, E.: Profiling subjective symptoms and autonomic changes associated with cybersickness. Auton. Neurosci. 203, 41–50 (2017)

    Article  Google Scholar 

  19. Glendon, A.I., Dorn, L., Davies, D.R., Matthews, G., Taylor, R.G.: Age and gender differences in perceived accident likelihood and driver competences. Risk Anal. 16(6), 755–762 (1996)

    Article  Google Scholar 

  20. Golding, J.F.: Motion sickness susceptibility. Auton. Neurosci. 129(1–2), 67–76 (2006)

    Article  Google Scholar 

  21. Harm, D., Taylor, L., Bloomberg, J.: Adaptive changes in sensorimotor coordination and motion sickness following repeated exposures to virtual environments (2007)

    Google Scholar 

  22. Hu, S., Grant, W.F., Stern, R.M., Koch, K.L.: Motion sickness severity and physiological correlates during repeated exposures to a rotating optokinetic drum. Aviat. Space Environ. Med. 62, 308–314 (1991)

    Google Scholar 

  23. Inc., D.B.T.: D-box motion actuators (2019). http://www.d-box.com

  24. International, S.: SAE international releases updated visual chart for its “levels of driving automation” standard for self-driving vehicles (2019). https://bit.ly/2QvC3DU

  25. Johnson, D.M.: Introduction to and review of simulator sickness research. Technical report, Army Research Institute Field Unit Fort Rucker AL (2005)

    Google Scholar 

  26. Kennedy, R.S., Lane, N.E., Berbaum, K.S., Lilienthal, M.G.: Simulator sickness questionnaire: an enhanced method for quantifying simulator sickness. Int. J. Aviat. Psychol. 3(3), 203–220 (1993)

    Article  Google Scholar 

  27. Keshavarz, B., Ramkhalawansingh, R., Haycock, B., Shahab, S., Campos, J.: Comparing simulator sickness in younger and older adults during simulated driving under different multisensory conditions. Transp. Res. Part F: Traffic Psychol. Behav. 54, 47–62 (2018)

    Article  Google Scholar 

  28. Keshavarz, B., Hecht, H.: Validating an efficient method to quantify motion sickness. Hum. Factors 53(4), 415–426 (2011)

    Article  Google Scholar 

  29. Kim, Y.Y., Kim, H.J., Kim, E.N., Ko, H.D., Kim, H.T.: Characteristic changes in the physiological components of cybersickness. Psychophysiology 42(5), 616–625 (2005)

    Google Scholar 

  30. Klüver, M., Herrigel, C., Heinrich, C., Schöner, H.P., Hecht, H.: The behavioral validity of dual-task driving performance in fixed and moving base driving simulators. Transp. Res. Part F: Traffic Psychol. Behav. 37, 78–96 (2016)

    Article  Google Scholar 

  31. Klüver, M., Herrigel, C., Preuß, S., Schöner, H.P., Hecht, H.: Comparing the incidence of simulator sickness in five different driving simulators. In: Proceedings of Driving Simulation Conference (2015)

    Google Scholar 

  32. Kolasinski, E.M.: Simulator sickness in virtual environments. Technical report, Army Research Inst for the Behavioral and Social Sciences, Alexandria, VA (1995)

    Google Scholar 

  33. LaViola Jr., J.J.: A discussion of cybersickness in virtual environments. ACM Sigchi Bull. 32(1), 47–56 (2000)

    Article  Google Scholar 

  34. LimeSurvey: Professional online survey tool (2019). https://www.limesurvey.org

  35. Mourant, R.R., Thattacherry, T.R.: Simulator sickness in a virtual environments driving simulator. In: Proceedings of the Human Factors and Ergonomics Society Annual Meeting, vol. 44, pp. 534–537. SAGE Publications, Los Angeles (2000)

    Google Scholar 

  36. Mousavi, M., Jen, Y.H., Musa, S.N.B.: A review on cybersickness and usability in virtual environments. In: Advanced Engineering Forum, vol. 10, pp. 34–39. Trans Tech Publications (2013)

    Google Scholar 

  37. Munafo, J., Diedrick, M., Stoffregen, T.A.: The virtual reality head-mounted display oculus rift induces motion sickness and is sexist in its effects. Exp. Brain Res. 235(3), 889–901 (2017)

    Article  Google Scholar 

  38. Nagy, A.L., MacLeod, D.I., Heyneman, N.E., Eisner, A.: Four cone pigments in women heterozygous for color deficiency. JOSA 71(6), 719–722 (1981)

    Article  Google Scholar 

  39. Park, G.D., Allen, R.W., Fiorentino, D., Rosenthal, T.J., Cook, M.L.: Simulator sickness scores according to symptom susceptibility, age, and gender for an older driver assessment study. In: Proceedings of the Human Factors and Ergonomics Society Annual Meeting, vol. 50, pp. 2702–2706. SAGE Publications, Los Angeles (2006)

    Google Scholar 

  40. Rangelova, S., Andre, E.: A survey on simulation sickness in driving applications with virtual reality head-mounted displays. PRESENCE Virtual Augment. Real. 27(1), 15–31 (2019)

    Article  Google Scholar 

  41. Rangelova, S., Decker, D., Eckel, M., Andre, E.: Simulation sickness evaluation while using a fully autonomous car in a head mounted display virtual environment. In: Chen, J.Y.C., Fragomeni, G. (eds.) VAMR 2018. LNCS, vol. 10909, pp. 155–167. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-91581-4_12

    Chapter  Google Scholar 

  42. Rangelova, S., Marsden, N.: Gender differences affect enjoyment in HMD virtual reality simulation. In: Proceedings of the 17th Driving Simulation Conference 2018 Europe, pp. 209–2010, September 2018. https://doi.org/10.13140/RG.2.2.14558.08005

  43. Rebenitsch, L., Owen, C.: Review on cybersickness in applications and visual displays. Virtual Real. 20(2), 101–125 (2016)

    Article  Google Scholar 

  44. Rolnick, A., Lubow, R.: Why is the driver rarely motion sick? The role of controllability in motion sickness. Ergonomics 34(7), 867–879 (1991)

    Article  Google Scholar 

  45. PLUX Wireless Biosignals S.A.: PLUX research kit (2019). http://www.biosignalsplux.com/

  46. Stanney, K.M., Cohn, J.V.: Virtual environments. In: The Human-Computer Interaction Handbook, pp. 647–664. CRC Press (2007)

    Google Scholar 

  47. Stanney, K.M., Hale, K.S., Nahmens, I., Kennedy, R.S.: What to expect from immersive virtual environment exposure: influences of gender, body mass index, and past experience. Hum. Factors 45(3), 504–520 (2003)

    Article  Google Scholar 

  48. Viaud-Delmon, I., Ivanenko, Y.P., Berthoz, A., Jouvent, R.: Sex, lies and virtual reality. Nat. Neurosci. 1(1), 15 (1998)

    Article  Google Scholar 

  49. Wagner, J., Lingenfelser, F., Baur, T., Damian, I., Kistler, F., André, E.: The social signal interpretation (SSI) framework: multimodal signal processing and recognition in real-time. In: Proceedings of the 21st ACM International Conference on Multimedia, pp. 831–834. ACM (2013)

    Google Scholar 

  50. Walch, M., et al.: Evaluating VR driving simulation from a player experience perspective. In: Proceedings of the 2017 CHI Conference Extended Abstracts on Human Factors in Computing Systems, pp. 2982–2989. ACM (2017)

    Google Scholar 

  51. Weech, S., Kenny, S., Barnett-Cowan, M.: Presence and cybersickness in virtual reality are negatively related: a review. Front. Psychol. 10, 158 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stanislava Rangelova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rangelova, S., Rehm, K., Diefenbach, S., Motus, D., André, E. (2020). Gender Differences in Simulation Sickness in Static vs. Moving Platform VR Automated Driving Simulation. In: Krömker, H. (eds) HCI in Mobility, Transport, and Automotive Systems. Automated Driving and In-Vehicle Experience Design. HCII 2020. Lecture Notes in Computer Science(), vol 12212. Springer, Cham. https://doi.org/10.1007/978-3-030-50523-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-50523-3_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-50522-6

  • Online ISBN: 978-3-030-50523-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics