
Shared-Memory Parallel Probabilistic
Graphical Modeling Optimization:
Comparison of Threads, OpenMP,

and Data-Parallel Primitives

Talita Perciano1(B) , Colleen Heinemann1,2, David Camp1, Brenton Lessley3,
and E. Wes Bethel1

1 Lawrence Berkeley National Laboratory, Berkeley, USA
{tperciano,dcamp,ewbethel}@lbl.gov

2 University of Illinois at Urbana-Champaign, Champaign, USA
heinmnn2@illinois.edu

3 Verb Surgical, Inc., Santa Clara, USA

Abstract. This work examines performance characteristics of multiple
shared-memory implementations of a probabilistic graphical modeling
(PGM) optimization code, which forms the basis for an advanced, state-
of-the art image segmentation method. The work is motivated by the
need to accelerate scientific image analysis pipelines in use by experi-
mental science, such as at x-ray light sources, and is motivated by the
need for platform-portable codes that perform well across many differ-
ent computational architectures. The primary focus of this work and its
main contribution is an in-depth study of shared-memory parallel perfor-
mance of different implementations, which include those using alternative
parallelization approaches such as C11-threads, OpenMP, and data par-
allel primitives (DPPs). Our results show that, for this complex data-
intensive algorithm, the DPP implementation exhibits better runtime
performance, but also exhibits less favorable scaling characteristics than
the C11-threads and OpenMP counterparts. Based upon a set of experi-
ments that collect hardware performance counters on multiple platforms,
the reason for the runtime performance difference appears to be due pri-
marily to algorithmic efficiency gains: the reformulation from the tradi-
tional C11-threads and OpenMP expression of the solution into that of
data parallel primitives results in significantly fewer instructions being
executed. This study is the first of its type to do performance analysis
using hardware counters for comparing methods based on VTK-m-based
data-parallel primitives with those based on more traditional OpenMP
or threads-based parallelism. It is timely, as there is increasing aware-
ness of the need for platform portability in light of increasing node-level
parallelism and increasing device heterogeneity.

Keywords: Probabilistic graphical models · Modeling optimization ·
Markov random fields · Image segmentation · Computer vision · Data
parallel primitives · Shared-memory parallel · Platform portability

c© Springer Nature Switzerland AG 2020
P. Sadayappan et al. (Eds.): ISC High Performance 2020, LNCS 12151, pp. 127–145, 2020.
https://doi.org/10.1007/978-3-030-50743-5_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-50743-5_7&domain=pdf
http://orcid.org/0000-0002-2388-1803
https://doi.org/10.1007/978-3-030-50743-5_7


128 T. Perciano et al.

1 Introduction

Image segmentation is a computationally intensive task, influencing scientific
analysis pipelines as a critical element, particularly those that work with large
image-based data obtained by experiments and advanced instruments, such as
the X-ray imaging devices located at the Advanced Light Source at Berkeley
Lab1. As such instruments continually update in spatial and spectral resolution,
there is an increasing need for high-throughput processing of large collections
of 2D and 3D image data for use in time-critical activities such as experiment
optimization and tuning [3]. Our work here is motivated by the need for image
analysis tools that perform well on modern platforms, and that are expected to
be portable to next-generation hardware (Fig. 1).

Fig. 1. Going from a raw image obtained by experiment to a segmented image suitable
for quantitative analysis involves multiple processing stages. This example shows a
single 2D slice from a 3D image stack obtained by x-ray microscopy at the Advanced
Light Source. Here, the original data (left) undergoes an image oversegmentation to
produce coarse regions (middle), which then undergo an additional processing stage
to produce a highly accurate segmentation (right). The focus of this paper is on the
method for the final processing stage, which uses a probabilistic graphical model that
is optimized using a Markov Random Field formulation.

This work centers on evaluating the viability of specific approaches for achiev-
ing platform portability and performance on multi- and many-core platforms.
We focus on a specific data-intensive problem for this study known as prob-
abilistic graphical model (PGM) optimization using a Markov Random Field
(MRF) formulation to tackle image segmentation problems. Such methods are
known for their high degree of accuracy, and, thanks to recent advances, their
amenability to parallelization. We focus on shared-memory parallel performance
in this study, with an eye towards future hybrid-parallel implementations that
build on our previous works [11,17,18,30].

We parallelize this unsupervised, graph-based learning method applied to
scientific image segmentation using three different approaches, and perform an
1 Advanced Light Source website: http://als.lbl.gov/.

http://als.lbl.gov/


Shared-Memory Parallel Probabilistic Graphical Modeling Optimization 129

in-depth performance analysis of each of the three: first by using C11-threads,
then using the Open Multi-Processing (OpenMP) API, and finally using data-
parallel primitives (Sort, Scan, Reduce, etc.). The C11-threads implementation
is the most coarse in terms of workload decomposition, where N pixel neighbor-
hoods are spread across P threads, where each thread receives N/P of the work.
The OpenMP implementation uses loop parallelization over the N neighbor-
hoods, which is a finer-grained distribution than the C11-threads version, and
also benefits from better load balance due to OpenMP’s dynamic scheduling
capabilities. The DPP implementation is the finest level of workload decompo-
sition, where the K operations in a given DPP are divided in chunks of size C
across P execution threads.

In this work, we evaluate the key performance characteristics of each imple-
mentation using strong scalability measures and runtime performance. We also
analyze the factors that lead to these performance characteristics by examining
hardware performance counters for metrics like code vectorization, number of
instructions executed, and memory cache utilization. The main contributions of
this paper are: (1) to compare performance of a PGM optimization algorithm
implemented with VTK-m-based data parallel primitives with ones based on
explicit threading and OpenMP; (2) to give insight into performance charac-
teristics of PGM optimization using VTK-m-based data parallel primitives; (3)
the first use of hardware performance counters to examine the performance of a
VTK-m-based code, where previous works looking at visualization and rendering
measure and report runtime only (e.g., [15–17,19,23,28]).

2 Background and Previous Work

In the following sections, we summarize works relating to image segmenta-
tion, graph-based methods including MRF, and approaches for performance and
portability using C11-threads, OpenMP, and data parallel primitives.

2.1 MRF-Based Image Segmentation

The process of segmenting an image involves separating various phases or compo-
nents from a picture using photometric information and/or relationships between
pixels/regions representing a scene. This essential step in an image analysis
pipeline has been given great attention recently when studying experimental
data [29]. There are several different types of image segmentation algorithms,
which can be divided into categories, such as: threshold-based, region-based,
edge-based, clustering-based, graph-based, and learning-based techniques. Of
these, the graph- and learning-based methods tend to achieve the highest accu-
racy, but at the highest computational cost.

Graph-based methods are well-suited for image segmentation tasks due to
their ability to use contextual information contained in the image, i.e., relation-
ships among pixels and/or regions. The probabilistic graphical model (PGM)
known as Markov random fields (MRF) [22] is an example of one such method.



130 T. Perciano et al.

MRFs represent discrete data by modeling neighborhood relationships, thereby
consolidating structure representation for image analysis [21].

Despite their high accuracy, MRF optimization algorithms have high compu-
tational complexity (NP-hard). Strategies for overcoming the complexity, such as
graph-cut techniques, are often restricted to specific types of models (first-order
MRFs) [14] and energy functions (regular or submodular) [14]. For higher-order
MRFs and non-submodular functions, some strategies using parallelized graph
cuts and parallelized Belief Propagation have also been proposed [7,10,12,32].
These approaches, though, typically depend on orderly reduction or submodular
functions [34], which are undesirable constraints when dealing with complex and
large image datasets because they limit the contextual modeling of the problem.

In order to circumvent such drawbacks, recent works [24,25] have proposed
theoretical foundations for distributed parameter estimation in MRF. These
approaches make use of a composite likelihood, which enable parallel solutions
to subproblems. Under general conditions on the composite likelihood factoriza-
tions, the distributed estimators are proven to be consistent. The Linear and
Parallel (LAP) [26] algorithm parallelizes naturally over cliques and, for graphs
of bounded degree, its complexity is linear in the number of cliques. It is fully
parallel and, for log-linear models, it is also data efficient. It requires only the
local statistics of the data, i.e., considering only pixel values of local neighbor-
hoods, to estimate parameters.

Perciano et al. [30] describe a graph-based model, referred to as Parallel
Markov Random Fields (PMRF), which exploits MRFs to segment images.
Both the optimization and parameter estimation processes are parallelized using
the LAP method, and the implementation is based on C11 multithreading.
The first attempt to reimplement the PMRF algorithm is described in [11],
where a distributed-memory version of the algorithm is implemented using MPI.
Lessley et al. [18] reformulates the PMRF algorithm using data parallel primi-
tives implemented in the VTK-m library. This work takes advantage of a new
implementation of the maximal cliques problem also using DPPs [19].

Although the previous works study the computational performance of the
reimplemented versions of the PMRF algorithm, the correctness of the new ver-
sions is emphasized. In the work we present here, we describe a detailed study
of shared-memory scalability, as well as collecting hardware performance coun-
ters, such as FLOPS/vectorization, memory utilization, instruction counts, and
so forth, and use these to perform an in-depth analysis of three shared-memory
parallel implementations of the PMRF algorithm: C11-threads, OpenMP, DPP.
In the long term, these shared-memory parallel methods would be paired with
our distributed-memory parallel implementation [11] to produce a scalable,
hybrid-parallel implementation that is portable across HPC platforms and pro-
cessors.



Shared-Memory Parallel Probabilistic Graphical Modeling Optimization 131

2.2 Performance and Portability

Open Multi-Processing (OpenMP). OpenMP has been used before to accel-
erate graph-based algorithms. Recently, Meng et al. [24] proposed a paralleliza-
tion of graph-based machine learning algorithms using OpenMP. The authors
also use LAPACK [2] and BLAS [4], which are highly vectorized and multi-
threaded using OpenMP, to optimize intensive linear algebra calculations.

Sariyuce et al. [31], describe a hybrid implementation of graph coloring using
MPI and OpenMP. Ersoy et al. [9] proposed a parallel implementation of a
shortest path algorithm for time dependent graphs using OpenMP and CUDA.
Time dependent shortest path problem (TDSPP) is another example of an NP-
hard problem, as the one we tackle in this paper.

We reformulate the PMRF algorithm using OpenMP by targeting loop paral-
lelization over neighborhoods, which is relatively coarse-grained when compared
to “inner-loop” parallelization. Load balancing is enabled through OpenMPs
dynamic scheduling algorithms.

Data Parallel Primitives (DPP). The primary motivation of using DPPs,
particularly those that are amenable to vectorization, is because this approach
appears promising for achieving good performance on multi- and many-core
architectures. Levesque and Voss, 2017 [20], speculate that vectorized codes may
achieve performance gains of as much as 10–30 fold compared to non-vectorized
code, with the added benefit of using less power on multi- and many-core archi-
tectures. DPPs are amenable to vectorization, and in turn, are capable of high
performance on multi- and many-core architectures. This idea is not new, but
goes over 20 years to early work by Blelloch [5], who proposed a vector-scan
model for parallel computing.

Lessley, et al., 2018 [18] present an implementation of the PMRF algorithm
using DPPs. The DPP form of PMRF required a non-trivial reformulation of
the reference C++/OpenMP implementation, where reformulation is required
to map traditional loop-based computations onto data parallel primitives such
as Sort, Scan, Reduce, etc. That work compared performance and scaling differ-
ences of DPP-PMRF and C++/OpenMP parallel versions by measuring runtime
performance.

The DPP-PMRF implementation relies on the VTK-m library [28], which
is a platform-portable framework that provides a set of key DPPs, along with
back-end code generation and runtime support for the use of GPUs (CUDA)
and multi-core CPUs (TBB [6]) from a single code base [27]. VTK-m achieves
parallelization by distributing the work of its DPPs across “threads” using a
chunking/blocking model, where a larger collection of work is distributed in
chunks or blocks across threads. This basic concept applies to both CPU and
GPU implementations.

For the work we present here, we are using the implementation of DPP-
PMRF from Lessley et al., 2018 [18], but building upon that previous work in
a significant way. Namely, the 2018 study measured only runtime, whereas in
the work we present here, we are measuring several different types of hardware



132 T. Perciano et al.

performance counters to gain a better understanding of the factors contributing
to absolute runtime performance differences and relative scaling characteristics,
and compare those measures with those obtained from traditional OpenMP and
threads-parallel implementations of the PMRF algorithm.

3 Design and Implementation

We begin by presenting the baseline, serial MRF-based image segmentation algo-
rithm (Sect. 3.1). The subsequent subsections cover three different parallel imple-
mentations: C11-threads (Sect. 3.2), OpenMP (Sect. 3.3), and DPP (Sect. 3.4).
Each of these parallel subsections will focus on key parallelization topics, namely
work decomposition and the parallel algorithm implementation, with an empha-
sis on highlighting differences from the baseline implementation.

3.1 The Baseline MRF Algorithm

The baseline MRF algorithm, along with a threads-parallel variant, are described
in more detail in Perciano et al., 2016 [30]. The input consists of a grayscale
image, an oversegmentation of the input image, and a parameter indicating the
desired number of output labels (classes). The oversegmented image is a prelimi-
nary segmentation based upon a low-cost computational estimate. For example,
a threshold operator can produce an oversegmented image. The oversegmented
image is known to be inaccurate, but is inexpensive to compute. It is inaccurate in
that it has “too many” segments, or regions, hence the name “oversegmented”.
The oversegmented image serves as the starting point for MRF optimization,
which will merge and change oversegmented regions into a more accurate seg-
mentation.

The pseudocode for the Baseline MRF algorithm is shown in Algorithm 1.
It consists of a one-time initialization phase, followed by a compute-intensive,
primary parameter estimation optimization phase. The output is a segmented
image.

Algorithm 1. Baseline MRF
Require: Original image, oversegmentation, number of output labels
Ensure: Segmented image and estimated parameters
1: Initialize parameters and labels randomly
2: Create graph from oversegmentation
3: Find maximal cliques of the graph
4: Construct k-neighborhoods for all maximal cliques
5: for each EM iteration do
6: for each neighborhood of the subgraph do
7: Compute MAP estimation
8: end for
9: Update parameters and labels

10: end for



Shared-Memory Parallel Probabilistic Graphical Modeling Optimization 133

The goal of the initialization phase is the construction of an undirected graph
of pixel regions, each with statistically similar grayscale intensities among mem-
ber pixels. Starting with the original image and the oversegmented version of
that image, the algorithm then builds a graph from the oversegmented image,
where each vertex V represents a region in the oversegmented image (i.e., a
spatially connected region of pixels having similar intensity), and each edge E
indicates spatial adjacency of regions.

Next, in the main computational phase, we define an MRF model over the
set of vertices, which includes an energy function representing contextual infor-
mation of the image. In particular, this model specifies a probability distribution
over the k-neighborhoods of the graph. Each k-neighborhood consists of the ver-
tices of a maximal clique, along with all neighbor vertices that are within k edges
(or hops) from any of the clique vertices; in this study, we use k = 1.

The MRF algorithm then performs energy function optimization over each of
these neighborhoods. This optimization consists of an iterative invocation of the
expectation-maximization (EM) algorithm, which performs parameter estima-
tion using the maximum a posteriori (MAP) inference algorithm [13]. The goal
of the optimization routine is to converge on the most-likely (minimum-energy)
assignment of labels for the vertices in the graph; the mapping of the vertex
labels back to pixels yields the output image segmentation.

3.2 The C++/Threads Algorithm

The C++/Threads implementation uses the same input and parameters as the
Baseline implementation and performs the same types of computations. The
computation is parallelized by dividing the N neighborhoods evenly across each
of the T threads. In this case, the first group of N/T neighborhoods is assigned
to the first thread, the second N/T to the second thread, and so forth. Pro-
cessing consists of optimizing a set of neighborhoods using MAP and estimat-
ing the parameters for the desired labels (classes). In this implementation, a
shared-memory array that hold results from the optimization process is used
by all threads on subsequent EM iterations. This shared-memory array is a
vector that carries the estimated classes for each vertex of the graph. During
the parallel optimization process, the threads are synchronized every time the
shared-memory is updated with new estimated values for each vertex.

This threads-based model is coarse-grained parallelism: each thread is respon-
sible for a rather sizeable amount of work, with relatively little interaction
between threads. Also, the way the algorithm distributes the work across threads
does not take into account the size of the neighborhoods. This can potentially
lead to load imbalance, given that the neighborhoods can vary considerably
depending on the input and oversegmentation.



134 T. Perciano et al.

Algorithm 2. C++/Threads: Threaded implementation of parallel MRF
Require: Original image, oversegmentation, number of output labels
Ensure: Segmented image and estimated parameters
1: Initialize parameters and labels randomly
2: Create graph from oversegmentation
3: Find maximal cliques of the graph
4: Construct k-neighborhoods for all maximal cliques
5: Partition into T groups of size N/T
6: for In parallel : each thread processes its N/T group do
7: for each EM iteration do
8: for each neighborhood of the subgraph do
9: Compute MAP estimation

10: end for
11: Update parameters and labels
12: end for
13: end for

3.3 The C++/OpenMP Algorithm

The OpenMP-parallel version of the MRF algorithm, shown in Algorithm 3,
uses the same input and parameters as the Baseline implementation and per-
forms the same types of computations. This version is finer-grained in terms
of workload distribution as compared to the C++/Threads version: the inner
loop of Algorithm 3 iterates over neighborhoods, of which there are typically
many (thousands for 2D images to millions for 3D volumes). We parallelize that
neighborhood-iteration loop using OpenMP, and use OpenMP’s dynamic thread
scheduling algorithms to achieve more even load balance across all threads. The
challenge in this problem is that the amount of computation required for each
neighborhood varies as a function of the size of the neighborhood and its con-
nectivity to adjacent regions.

Algorithm 3. C++/OpenMP: Parallelization with OpenMP
Require: Original image, oversegmentation, number of output labels
Ensure: Segmented image and estimated parameters
1: Initialize parameters and labels randomly
2: Create graph from oversegmentation
3: Find maximal cliques of the graph
4: Construct k-neighborhoods for all maximal cliques
5: for each EM iteration do
6: for OpenMP parallel each neighborhood of the subgraph do
7: Compute MAP estimation
8: end for
9: Update parameters and labels

10: end for



Shared-Memory Parallel Probabilistic Graphical Modeling Optimization 135

Compared to the threads implementation, the OpenMP design targets a finer
granularity so as to achieve better load balance across threads. One of the objec-
tives of our performance study is to better understand the performance impact
of these different design choices.

3.4 VTK-m/DPP

Our VTK-m/DPP implementation [18] is a complete reformulation of the MRF
algorithm using data-parallel primitives. To make use of DPPs, the implemen-
tation recasts the algorithm into a sequence of DPP-based processing steps, e.g,
sequences of operations like Scan, Sort, and Reduce.

Algorithm 4 shows pseudocode for the VTK-m/DPP algorithm. Each of these
steps is a complex seqeuence of DPP calls. For example, from [18], the line that
reads”Construct k-neighborhoods from maximal cliques in parallel” consists of
several DPP operations:

Algorithm 4. VTK-m/DPP: Data parallel primitive version of Markov Random
Field algorithm
Require: Original image, oversegmentation, number of output labels
Ensure: Segmented image and estimated parameters
1: DPP in parallel: Create graph from oversegmentation
2: DPP in parallel: Enumerate maximal cliques of graph
3: Initialize parameters and labels randomly
4: DPP in parallel: Construct k-neighborhoods from maximal cliques
5: DPP in parallel: Replicate neighborhoods by label
6: for each EM iteration do
7: DPP in parallel: Gather replicated parameters and labels
8: for each vertex of each neighborhood do
9: DPP in parallel: MAP estimation

10: end for
11: DPP in parallel: Update parameters and labels
12: end for

1. A Map operator finds the count of neighbors that are within 1 edge from the
vertex and not a member of the vertex’s maximal clique;

2. A Scan operator adds the counts of neighbors for the purpose of allocating a
neighbors array work buffer;

3. A Map operator populates the newly created neighbors array;
4. The SortByKey and Unique operators remove duplicate neighbors.

There are several significant differences between the VTK-m/DPP, C++/-
OpenMP, and C++/Threads implementations of this method. One is the level of
granularity in parallelization. The C++/Threads is the coarsest decomposition,
C++/OpenMP in the middle, and the VTK-m/DPP is the finest level of gran-
ularity of parallelization. Each of the DPPs is distributed in chunking fashion



136 T. Perciano et al.

across each of the T available execution threads. Another key difference is in the
relative level of “verboseness” of the algorithm itself. While we did not count the
number of lines of code, as we shall see in the Results section (Sect. 4.3), there is
a significant difference in the number of instructions executed by each of these
implementations.

4 Experiment and Results

The experiments in this section serve to answer two primary questions. First,
we are interested in how well the different implementations perform on a single-
socket study: what are the key performance characteristics of each version? Sec-
ond, we collect hardware performance counters to understand how well each
implementation vectorizes and makes use of the memory hierarchy: what are
the factors that lead to these performance characteristics? Sect. 4.1 describes
the source datasets and the computational platform that we use for the experi-
ments. Sect. 4.2 presents results of the study, which we discuss in Sect. 4.3.

4.1 Datasets, Computational Platforms, and Software

Datasets. We are using an experimental dataset that was generated by the
Lawrence Berkeley National Laboratory Advanced Light Source X-ray beamline
8.3.22 [8] for all tests. This dataset contains cross-sections of a geological sam-
ple and conveys information regarding the x-ray attenuation and density of the
scanned material as a gray scale value. The scanned samples are pre-processed
using a separate software that provides reconstruction of the parallel beam pro-
jection data into a 1 GB stack of 500 image slices with dimensions of 1290×1305.

For our experiments, we use two augmented versions of this dataset, where
we replicate the data of each cross-section by mirroring in both the X and Y
dimensions of the data, resulting in one 3.3 GB stack of 500 image slices with
dimensions of 2580 × 2610 (referred to as the ‘Sandstone2K’ dataset), and one
6.6 GB stack of 500 image slices with dimensions of 5160 × 5220 (referred to as
the ‘Sandstone5k’ dataset).

Hardware Platforms
Intel Xeon Phi. Cori.nersc.gov is a Cray XC40 system comprised of 2,388
nodes containing two 2.3 Ghz 16-core Intel Haswell processors and 128 GB
DDR4 2133 MHz memory, and 9,688 nodes containing a single 68-core 1.4 GHz
Intel Xeon Phi 7250 (Knights Landing) processor and 96 GB DDR4 2400 GHz
memory. For our experiments, we use the KNL processor.3 Compiler: Intel ICC
19.0.3.199.

2 http://microct.lbl.gov.
3 Cori configuration page: http://www.nersc.gov/users/computational-systems/cori/

configuration/.

http://microct.lbl.gov
http://www.nersc.gov/users/computational-systems/cori/configuration/
http://www.nersc.gov/users/computational-systems/cori/configuration/


Shared-Memory Parallel Probabilistic Graphical Modeling Optimization 137

Ivy Bridge. Allen.lbl.gov is an Intel(R) Xeon(R) CPU E5-2609 v2 containing
two 2.5 GHz 4-core Intel Xeon Ivy Bridge EN/EP/EX processors and 32 GB of
memory. Compiler: Intel ICC 19.1.0.166.

Software Environment. The software environment in these tests consists of
several different codes, each of which we describe below.

Oversegmentation. We use a custom implementation of the Simple Linear Iter-
ative Clustering (SLIC) method [1]. This implementation will take as input 2D
images or 3D volumes of scalar values (gray-level images), and output 2D images
or 3D volumes at the same resolution as the input data, but where output pix-
els/voxels are region label values, rather than pixel/voxel luminosity. We prepare
using the input images/volumes described above, and process them using the fol-
lowing SLIC parameters: superpixel size = 80, compactness = 10.

C++/OpenMP and C++/Threads. The C++/Threads version of PMRF is
implemented using C11 multithreading for parallelization. The C++/OpenMP
algorithm is implemented with OpenMP 4.5. We take advantage of OpenMP loop
parallelism constructs to achieve outer-parallelism over MRF neighborhoods,
and make use of OpenMP’s dynamic scheduling algorithm in the performance
studies.

VTK-m/DPP. The VTK-m/DPP algorithm is implemented using the platform-
portable VTK-m toolkit [27], and coded to VTK-m API version 1.3.0. In our
experiments, we configured VTK-m for parallelism on the CPU by enabling an
OpenMP backend, and set the VTK-m index integer (vtkm::Id) size to 64 bits.

Hardware Performance Counters. For measuring hardware performance coun-
ters on CPU platforms, we made use of likwid-perfctr, which is part of the
LIKWID toolsuite [33]. LIKWID is a collection of command line programs that
facilitate performance-oriented program development and production in x86 mul-
ticore environments under Linux. Using LIKWID 4.3.4 on Allen/Ivy Bridge and
4.3.0 on Cori/KNL, we collected and analyzed several different performance
counters and restricted these measures to the PGM graph optimization phase
only by using LIKWID’s marker API:

– Counts of total number of double-precision scalar and vector instructions exe-
cuted (FLOPS DP), as well as total number of all scalar and vector instructions
executed (UOPS RETIRED *).

– Measures related to L2 cache: L2 request rate, miss rate, and miss ratio
(L2CACHE).

– Vectorization ratio. On Ivy Bridge, LIKWID reports this directly. On KNL,
we compute this ratio to be V/(V + S), where V is the count of vector
(“packed”) operations, and S is the count of scalar operations.



138 T. Perciano et al.

4.2 Performance and Scalability Studies: Parallel MRF

Here, we present the results of performance and scaling studies of the three differ-
ent PMRF implementations (VTK-m/DPP, C++/OpenMP, C++/Threads) on
two different platforms (KNL, Ivy Bridge). The primary objective is to compare
their runtime performance and scalability, and to examine hardware counters
to gain deeper insight into the performance characteristics of each method. The
discussion and analysis of these results appears in Sect. 4.3, which follows.

Runtime. The first performance study question we examine is a comparison of
runtimes among the implementations used. We executed all the codes at varying
levels of concurrency on the KNL platform and Ivy Bridge platforms using two
different datasets (sandstone2k and sandstone5k). The speedup plots for the
datasets on both platforms are shown in Fig. 2 and Fig. 3.

Speedup is defined as S(n, p) = T∗(n)
T (n,p) where T (n, p) is the time it takes to

run the parallel algorithm on p processes with an input size of n, and T ∗(n) is
the time for the best serial algorithm on the same input.

Fig. 2. Speedup of the Sandstone2K and Sandstone5K datasets on Cori. The horizontal
axis is the concurrency level and the vertical axis measures the speedup.

Fig. 3. Speedup of the Sandstone2K and Sandstone5K datasets on the Ivy Bridge
platform. The horizontal axis is the concurrency level and the vertical axis measures
the speedup.



Shared-Memory Parallel Probabilistic Graphical Modeling Optimization 139

Examining these two speedup plots, we notice that although the VTK-
m/DPP version presents much faster runtimes at lower concurrencies, this imple-
mentation shows the worst speedups for both platforms. On the Ivy Bridge
platform, both the C++/Threads and C++/OpenMP versions present the best
speedup values with very similar results. On the other hand, on the KNL plat-
form, the C++/Threads version presents a similar speedup compared to the
VTK-m/DPP version.

Hardware Performance Counters. To gain a deeper understanding into code per-
formance, we collect hardware performance counters using LIKWID on the KNL
and Ivy Bridge platforms for the three different implementations. Table 1 shows
the results of the three different implementations run on the KNL platform. Here,
we vary concurrency across the range of 1, 2, ..., 256. Using LIKWID, we record
the counts for the FLOPS DP and L2CACHE performance counter groups. Results
for the Ivy Bridge platform tests are shown in Table 2, where concurrency varies
across 1, 2, ..., 8.

Table 1. KNL Platform and Hardware Performance Counters for the Sandstone5K
Dataset. Legend for counters: FLOPS: FLOPS DP (∗109); Vector%: Vectorization
Ratio (Proxy); L2 Miss Ratio: average % across all threads at a given concurrency.

Counter Code ver. Concurrency

1 2 4 8 16 32 64 128 256

Runtime (secs) VTK-m/DPP 5.78 3.93 3.01 1.33 0.94 0.90 1.84 6.65 27.39

C++/OpenMP 143.56 72.75 36.48 18.25 9.14 4.58 2.31 1.40 1.13

C++/Threads 140.16 70.24 35.48 18.09 9.89 6.73 10.92 21.60 43.23

1 2 4 8 16 32 64 128 256

FLOPS VTK-m/DPP 0.85 0.86 0.86 0.86 0.86 0.86 0.86 0.88 0.88

C++/OpenMP 49.32 49.32 49.32 49.32 49.32 49.32 49.32 49.32 49.32

C++/Threads 45.39 45.49 45.59 45.79 46.19 47.00 48.62 51.84 57.66

1 2 4 8 16 32 64 128 256

L2 Miss Ratio % VTK-m/DPP 0.01 0.20 0.39 0.97 2.86 7.72 24.79 61.05 64.66

C++/OpenMP 0.01 0.01 0.02 0.09 0.09 0.05 0.11 1.22 8.12

C++/Threads 0.01 0.01 0.06 0.16 0.28 0.36 0.42 0.94 1.57

1

Vector % VTK-m/DPP 43.48%

C++/OpenMP 51.44%

C++/Threads 46.89%

4.3 Discussion and Analysis

The VTK-m/DPP code is executing far fewer floating point instructions than
its C++/OpenMP and C++/Threads counterparts. For all the test results we
present, the runtime difference between the DPP (VTK-m/DPP) and non-DPP



140 T. Perciano et al.

(C++/OpenMP, C++/Threads) versions appears to be proportional to the dif-
ference in the amount of floating point instructions being executed. While the
DPP code is solving the same set of numerical equations as the non-DPP code
(for the MRF optimization), it does so using a completely different algorithmic
formulation. The DPP code design involved a significant refactorization of the
MRF optimization algorithm to map it to data parallel primitives [18]. This
reordering has resulted in significantly fewer operations being required to per-
form the computation, and is one of the primary findings of this study.

Vectorization Ratios. In both Table 1 and Table 2, we report a Vectorization
Ratio only for the serial configuration because this value does not change in a
significant way with increasing concurrency: the algorithm’s complexity is pri-
marily dependent upon problem size.

On the KNL platform, we see vectorization ratios that are comparable across
all three implementations, in the range of about 43%–51%. This result suggests
that the looping structures in all three implementations are amenable to a rea-
sonable level of automatic vectorization by the compiler on the KNL platform.

On the Ivy Bridge platform, the C++/OpenMP and C++/Threads versions
show vectorization ratios above 70%, while the VTK-m/DPP version shows
a much lower vectorization ratio of about 18%. There are two likely factors

Table 2. Ivy Bridge Platform and Hardware Performance Counters for the Sand-
stone5K Dataset. Legend for counters: FLOPS: (Double Precision Scalar FLOPS +
Double Precision Vector FLOPS) / (109); Vector%: Vectorization Ratio; L2 Miss Ratio:
average % across all threads at a given concurrency.

Counter/Measure Code version Concurrency

1 2 4 8

Runtime (secs) VTK-m/DPP 2.51 1.46 1.30 0.83

C++/OpenMP 13.34 6.66 3.35 1.83

C++/Threads 13.94 7.00 3.51 2.16

1 2 4 8

FLOPS (∗109) VTK-m/DPP 0.47 0.33 0.33 0.33

C++/OpenMP 7.14 7.13 7.13 7.13

C++/Threads 7.25 7.26 7.26 7.27

1 2 4 8

L2 Miss Ratio % VTK-m/DPP 0.26 0.26 0.25 0.25

C++/OpenMP 0.05 0.07 0.05 0.05

C++/Threads 0.04 0.06 0.06 0.06

1

Vector % VTK-m/DPP 18.16%

C++/OpenMP 73.31%

C++/Threads 70.43%



Shared-Memory Parallel Probabilistic Graphical Modeling Optimization 141

contributing to this difference. The first is in the code itself: the C++/OpenMP
and C++/Threads codes implement their computations using C++ vector
objects, and these are likely easier for the compiler to auto-vectorize compared
to code that performs explicit blocking and chunking, as is the case with VTK-m
internals, which will take a large DPP operation and decompose it into smaller
chunks, which are then executed in parallel by one of several backends (TBB,
OpenMP, or CUDA). With explicit blocking and chunking, there may be an
adverse interplay between how VTK-m blocks and chunks and what the com-
piler needs for a given architecture. This particular issue merits further study to
better understand this interplay.

The second reason concerns variation in how the compiler auto-vectorizes
code for each architecture. What works well on one architecture may not work
so well on a different architecture: we see this with the VTK-m/DPP code base
where the Intel compiler auto-vectorizes code to produce 43.48% vectorization on
the KNL platform, but is able to manage only 18.16% on the Ivy Bridge platform.
With the hardware performance counters we have access to with LIKWID, we are
unable to discern precisely which type of vector instructions are being executed
(e.g., SSE, AVX, AVX512) on each platform, which would in term provide more
useful insights.

At the outset of this study, we had the expectation that the VTK-m/DPP
code would have significantly better vectorization characteristics, which would
then account for its significantly faster runtime, particularly as we observed in
earlier studies [18]. Instead, what we see are comparable levels of vectorization
on the KNL (43%–51%), and a lower vectorization level on Ivy Bridge (18%).

It turns out that there are other factors that, in this study, have much more
impact on code performance than vectorization, namely the absolute number
of instructions executed. One of the primary findings of this study is that our
refactoring a complex graph algorithm (PMRF) to use DPPs results in signif-
icantly fewer instructions being executed compared to implementations using
C++/OpenMP and C++/Threads.

Scalability. These studies show differing levels of scalability, as evidenced in the
speedup charts shown in Fig. 2. The VTK-m/DPP code on the KNL platform
shows decreasing runtime up to about 32 cores, after which it increases in run-
time. Looking at the performance counters in Table 1, we see a corresponding
increase in the L2 Cache Miss ratio. The L2 cache misses are due to how KNL
shares L2 cache across hardware threads, where increasing the number of threads
to exceed the number of cores causes the amount of L2 cache available to each
core to be reduced. In other words, if there is one thread per core, it will use all
of the L2 cache, if two threads share a core, each thread has one-half of the L2
cache, and if three or four threads share a core, then each thread has access to
1/4 of the L2 cache.

On the KNL, the C++/Threads implementation shows decreasing runtime
up to about 32 cores, after which point the runtime increases significantly.
Whereas the VTK-m/DPP code shows significant L2 cache misses at higher
concurrency, the C++/Threads version does not. Instead, this performance



142 T. Perciano et al.

difference between C++/Threads and C++/OpenMP at higher concurrency is
most likely the result of a highly optimized OpenMP loop parallelization that is
provided by the compiler, an effect that does not become readily apparent until
higher degrees of node-level concurrency on the KNL platform.

On the Ivy Bridge platform, all implementations exhibit better scalability
than on the KNL platform. This is most likely the result of a large L3 cache that
is shared across all cores, something that is not present on the KNL platform.
However, the Ivy Bridge study only goes up to 8 threads, and the declined in
speedup shown in the KNL study (Fig. 2) does not begin until higher levels of
concurrency. Therefore, while we may see a decline in speedup on the Ivy Bridge
at higher concurrency, since that platform has only 8 cores, our study only goes
up to 8-way concurrency.

Platform Portability Issues. One of the objectives of OpenMP and VTK-m is to
provide platform portability, so that a given code implementation can be run,
without modification, on CPU and GPU platforms. We have demonstrated in
previous work [18] that the VTK-m/DPP is capable of running on the GPU
platform. For the C++/OpenMP implementation, there are significant restric-
tions and limitations on OpenMP in terms of what kind of code can be pro-
cessed successfully to emit device code. At the present time, our C++/OpenMP
implementation would require significant changes, including, but not limited to,
eliminating the use of “ragged arrays”, which are not naturally supported by
OpenMP on the GPU. This will be the subject of future work. Meanwhile, the
KNL platform in these studies allows us to go to 256-way parallel for the pur-
poses of performance analysis. This degree of node-level concurrency is expected
to be commonplace on future platforms.

5 Conclusion and Future Work

One of the objectives of this work has been to understand the performance char-
acteristics of three different approaches for doing shared-memory parallelization
of a probabilistic graphical modeling optimization code, which serves as the
basis for a highly accurate, and scalable method for scientific image segmen-
tation. The work is motivated by the need to improve throughput of scientific
analysis tools in light of increasing sensor and detector resolution. The three
parallelization methods consist of two that are “traditional” (C++/OpenMP
and C++/Threads) and one that is “non-traditional” (VTK-m/DPP).

At the outset of this work, we expected that the VTK-m/DPP implementa-
tion was running faster than the other two due to better vectorization charac-
teristics. The results of our performance study point to a different reason for the
performance difference: the VTK-m/DPP version executes many fewer instruc-
tions. The reason is because the process of reformulating a complex, graphical
model optimization code to use sequences of DPPs results in runtime code that
is more terse and efficient in terms of number of computations needed to pro-
duce the same answer as the corresponding C++/Threads and C++/OpenMP



Shared-Memory Parallel Probabilistic Graphical Modeling Optimization 143

formulations. This bit of insight, and the performance analysis methodology we
used, is the primary contribution of this paper. To our knowledge, this study is
the first of its kind: an in-depth performance analysis of codes based on DPPs,
OpenMP, and threads.

Future work will include pressing deeper into the topic of platform portability.
While our VTK-m/DPP implementation can run on both CPU and GPU plat-
forms, owing to the capabilities of the underlying DPP implementation, which
is based on VTK-m, our OpenMP codes are not yet capable of running on GPU
platforms. For OpenMP to emit code that runs on a GPU, the application must
conform to a strict set of memory access patterns. Future work will include
redesigning our code so that it does conform to those limitations.

The topic of platform portability and performance is of significant concern
as computational platforms increase in concurrency, particularly at the node
level. For that reason, this particular study is timely, for it sheds light on the
performance characteristics of a non-trivial, data-intensive code implemented
with three different methodologies, one of which is relatively new and holds
promise.

Acknowledgment. This work was supported by the Director, Office of Science, Office
of Advanced Scientific Computing Research, of the U.S. Department of Energy under
Contract No. DE-AC02-05CH11231, through the grant “Scalable Data-Computing
Convergence and Scientific Knowledge Discovery,” program manager Dr. Laura Biven,
and the Center for Applied Mathematics for Energy Related Applications (CAMERA).
We also thank the LBNL ALS division for the data and NERSC for the computational
resources.

References

1. Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., Süsstrunk, S.: Slic superpix-
els compared to state-of-the-art superpixel methods. IEEE Trans. Pattern Anal.
Mach. Intell. 34(11), 2274–2282 (2012). https://doi.org/10.1109/TPAMI.2012.120.
https://ieeexplore.ieee.org/document/6205760

2. Anderson, E., et al.: Lapack: a portable linear algebra library for high-performance
computers. In: Proceedings of the 1990 ACM/IEEE Conference on Supercomput-
ing, pp. 2–11. Supercomputing 1990, IEEE Computer Society Press, Los Alamitos,
CA, USA (1990)

3. Bethel, E.W., Greenwald, M., van Dam, K.K., Parashar, M., Wild, S.M., Wiley,
H.S.: Management, analysis, and visualization of experimental and observational
data - the convergence of data and computing. In: Proceedings of the 2016 IEEE
12th International Conference on eScience. Baltimore, MD, USA, October 2016

4. Blackford, L.S., et al.: An updated set of basic linear algebra subprograms (BLAS).
ACM Trans. Math. Softw. 28(2), 135–151 (2002). https://doi.org/10.1145/567806.
567807

5. Blelloch, G.E.: Vector Models for Data-parallel Computing. MIT Press, Cambridge
(1990)

6. Corporation, I.: Introducing the Intel Threading Building Blocks, May 2017.
https://software.intel.com/en-us/node/506042

https://doi.org/10.1109/TPAMI.2012.120
https://ieeexplore.ieee.org/document/6205760
https://doi.org/10.1145/567806.567807
https://doi.org/10.1145/567806.567807
https://software.intel.com/en-us/node/506042


144 T. Perciano et al.

7. Delong, A., Boykov, Y.: A scalable graph-cut algorithm for n-d grids. In: IEEE
Conference on Computer Vision and Pattern Recognition (2008)

8. Donatelli, J., et al.: Camera: the center for advanced mathematics for energy
research applications. Synchrotron Radiation News 28(2), 4–9 (2015)

9. Ersoy, M.A., Özturan, C.: Parallelizing shortest path algorithm for time dependent
graphs with flow speed model. In: 2016 IEEE 10th International Conference on
Application of Information and Communication Technologies (AICT), pp. 1–7,
October 2016. https://doi.org/10.1109/ICAICT.2016.7991833

10. Eslami, H., Kasampalis, T., Kotsifakou, M.: A GPU implementation of tiled belief
propagation on markov random fields. In: 2013 Eleventh ACM/IEEE International
Conference on Formal Methods and Models for Codesign (MEMOCODE 2013), pp.
143–146 (Oct 2013)

11. Heinemann, C., Perciano, T., Ushizima, D., Bethel, E.W.: Distributed memory
parallel markov random fields using graph partitioning. In: Fourth International
Workshop on High Performance Big Graph Data Management, Analysis, and Min-
ing (BigGraphs 2017), in conjunction with IEEE BigData 2017, December 2017

12. Jamriska, O., Sykora, D., Hornung, A.: A cache-efficient graph cuts on structured
grids. In: IEEE Conference on Computer Vision and Pattern Recognition, pp.
3673–3680 (2012)

13. Koller, D., Friedman, N.: Probabilistic Graphical Models: Principles and Tech-
niques - Adaptive Computation and Machine Learning. MIT Press, Cambridge
(2009)

14. Kolmogorov, V., Zabin, R.: What energy functions can be minimized via graph
cuts? IEEE Trans. Pattern Anal. Mach. Intell. 26(2), 147–159 (2004)

15. Larsen, M., Labasan, S., Navrátil, P., Meredith, J., Childs, H.: Volume rendering
via data-parallel primitives. In: Proceedings of EuroGraphics Symposium on Par-
allel Graphics and Visualization (EGPGV), pp. 53–62. Cagliari, Italy, May 2015

16. Larsen, M., Meredith, J., Navrátil, P., Childs, H.: Ray-tracing within a data parallel
framework. In: Proceedings of the IEEE Pacific Visualization Symposium, pp. 279–
286. Hangzhou, China, April 2015

17. Lessley, B., Moreland, K., Larsen, M., Childs, H.: Techniques for data-parallel
searching for duplicate elements. In: Proceedings of IEEE Symposium on Large
Data Analysis and Visualization (LDAV), pp. 1–5. Phoenix, AZ, October 2017

18. Lessley, B., Perciano, T., Heinemann, C., Camp, D., Childs, H., Bethel, E.W.:
DPP-PMRF: rethinking optimization for a probabilistic graphical model using
data-parallel primitives. In: 8th IEEE Symposium on Large Data Analysis and
Visualization (LDAV). Berlin, Germany, October 2018

19. Lessley, B., Perciano, T., Mathai, M., Childs, H., Bethel, E.W.: Maximal clique
enumeration with data-parallel primitives. In: IEEE Large Data Analysis and Visu-
alization. Phoenix, AZ, USA, October 2017

20. Levesque, J., Vose, A.: Programming for Hybrid Multi/Many-core MPP Sys-
tems. Chapman & Hall, CRC Computational Science, CRC Press/Francis&Taylor
Group, Boca Raton, November 2017, preprint

21. Lezoray, O., Grady, L.: Image Processing and Analysis with Graphs: Theory and
Practice. CRC Press, Boca Raton (2012)

22. Li, S.Z.: Markov Random Field Modeling in Image Analysis (2013). https://doi.
org/10.1007/978-1-84800-279-1

23. Li, S., Marsaglia, N., Chen, V., Sewell, C., Clyne, J., Childs, H.: Achieving portable
performance for wavelet compression using data parallel primitives. In: Proceedings
of EuroGraphics Symposium on Parallel Graphics and Visualization (EGPGV), pp.
73–81. Barcelona, Spain, June 2017

https://doi.org/10.1109/ICAICT.2016.7991833
https://doi.org/10.1007/978-1-84800-279-1
https://doi.org/10.1007/978-1-84800-279-1


Shared-Memory Parallel Probabilistic Graphical Modeling Optimization 145

24. Meng, Z., Wei, D., Wiesel, A., Hero, A.O.: Distributed learning of gaussian graph-
ical models via marginal likelihoods. In: The Sixteenth International Conference
on Artificial Intelligence and Statistics, pp. 39–47 (2013)

25. Meng, Z., Wei, D., Wiesel, A., Hero, A.O.: Marginal likelihoods for distributed
parameter estimation of gaussian graphical models. IEEE Trans. Signal Process.
62(20), 5425–5438 (2014)

26. Mizrahi, Y.D., Denil, M., de Freitas, N.: Linear and parallel learning of markov
random fields. Proc. Int. Conf. Mach. Learn. 32, 1–10 (2014)

27. Moreland, K.: VTK-m website, May 2017. http://m.vtk.org
28. Moreland, K., et al.: VTK-m: accelerating the visualization toolkit for massively

threaded architectures. IEEE Comput. Graph. Appl. (CG&A) 36(3), 48–58 (2016)
29. Perciano, T., et al.: Insight into 3D micro-CT data: exploring segmentation algo-

rithms through performance metrics. J. Synchrotron Radiat. 24(5), 1065–1077
(2017)

30. Perciano, T., Ushizima, D.M., Bethel, E.W., Mizrahi, Y.D., Parkinson, D., Sethian,
J.A.: Reduced-complexity image segmentation under parallel markov random field
formulation using graph partitioning. In: 2016 IEEE International Conference on
Image Processing (ICIP). pp. 1259–1263, September 2016

31. Sariyuce, A.E., Saule, E., Catalyurek, U.V.: Scalable hybrid implementation of
graph coloring using MPI and OPENMP. In: Proceedings of the 2012 IEEE 26th
International Parallel and Distributed Processing Symposium Workshops & Ph.D.
Forum, pp. 1744–1753. IPDPSW 2012, IEEE Computer Society, Washington, DC,
USA (2012). https://doi.org/10.1109/IPDPSW.2012.216

32. Shekbovstov, A., Hlavac, V.: A distributed mincut/maxflow algorithm combining
augmentation and push-relabel. In: International Journal of Computer Visualiza-
tion (2012)

33. Treibig, J., Hager, G., Wellein, G.: Likwid: a lightweight performance-oriented
tool suite for x86 multicore environments. In: Proceedings of the 2010 39th Inter-
national Conference on Parallel Processing Workshops, pp. 207–216. ICPPW 2010,
IEEE Computer Society, Washington, DC, USA (2010). https://doi.org/10.1109/
ICPPW.2010.38

34. Wang, C., Komodakis, N., Paragios, N.: Markov random field modeling, infer-
ence, learning in computer vision and image understanding: a survey. Comput.
Vis. Image Understand. 117(11), 1610–1627 (2013)

http://m.vtk.org
https://doi.org/10.1109/IPDPSW.2012.216
https://doi.org/10.1109/ICPPW.2010.38
https://doi.org/10.1109/ICPPW.2010.38

	Shared-Memory Parallel Probabilistic Graphical Modeling Optimization: Comparison of Threads, OpenMP, and Data-Parallel Primitives
	1 Introduction
	2 Background and Previous Work
	2.1 MRF-Based Image Segmentation
	2.2 Performance and Portability

	3 Design and Implementation
	3.1 The Baseline MRF Algorithm
	3.2 The C++/Threads Algorithm
	3.3 The C++/OpenMP Algorithm
	3.4 VTK-m/DPP

	4 Experiment and Results
	4.1 Datasets, Computational Platforms, and Software
	4.2 Performance and Scalability Studies: Parallel MRF
	4.3 Discussion and Analysis

	5 Conclusion and Future Work
	References




