Skip to main content

New Implementation of Discrete-Time Fractional-Order PI Controller by Use of Model Order Reduction Methods

  • Conference paper
  • First Online:
Advanced, Contemporary Control

Abstract

The paper presents new results in implementation of a discrete-time fractional-order PI controller by use of computationally simple and accurate Model Order Reduction-based approximation of a fractional-order integrator. The main advantage of the introduced method is elimination of the steady-state control error, the feature outperforming other finite-length implementations of discrete-time fractional-order integrators. Simulation experiments confirm the effectiveness of the presented methodology, both in terms of high accuracy and computational effectiveness of the introduced approximation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ahmed, M.F., Dorrah, H.T.: Design of gain schedule fractional PID control for nonlinear thrust vector control missile with uncertainty. Automatika 59(3–4), 357–372 (2018). https://doi.org/10.1080/00051144.2018.1549696

    Article  Google Scholar 

  2. Baranowski, J., Bauer, W., Zagorowska, M.: Stability properties of discrete time-domain Oustaloup approximation. In: Theoretical Developments and Applications of Non-integer Order Systems. Lecture Notes in Electrical Engineering. Springer (2016)

    Google Scholar 

  3. Barbosa, R., Tenreiro, J.A., Ferreira, I.M.: Tuning of PID controllers based on Bode’s ideal transfer function. Nonlinear Dyn. 38(1–4), 305–321 (2004)

    Article  Google Scholar 

  4. Cervera, A., Baños, A., Monje, C.A.: Tuning of fractional PID controllers by using QFT. In: Proceedings of the 32nd Annual Conference of the IEEE Industrial Electronics Society (IECON 2006), Paris, France (2006)

    Google Scholar 

  5. da Costa, J.S.: An introduction to fractional control. In: Control, Robotics and Sensors, Institution of Engineering and Technology (2012). https://digital-library.theiet.org/content/books/ce/pbce091e

  6. Hosseinnia, S.H., Tejado, I., Milanés, V., Villagrá, J., Vinagre, B.M.: Experimental application of hybrid fractional-order adaptive cruise control at low speed. IEEE Trans. Control Syst. Technol. 22(6), 2329–2336 (2014)

    Article  Google Scholar 

  7. HosseinNia, S.H., Tejado, I., Vinagre, B.M.: A method for the design of robust controllers ensuring the quadratic stability for switching systems. J. Vibr. Control 20(7), 1085–1098 (2014). https://doi.org/10.1177/1077546312470480

    Article  MathSciNet  Google Scholar 

  8. Keyser, R.D., Muresan, C.I., Ionescu, C.M.: A novel auto-tuning method for fractional order PI/PD controllers. ISA Trans. 62, 268–275 (2016). sI: Control of Renewable Energy Systems. http://www.sciencedirect.com/science/article/pii/S0019057816000392

  9. Krajewski, W., Viaro, U.: A method for the integer-order approximation of fractional-order systems. J. Franklin Inst. 351(1), 555–564 (2014)

    Article  Google Scholar 

  10. Liu, L., Zhang, S.: Robust fractional-order PID controller tuning based on Bode’s optimal loop shaping. Complexity 2018(6570560) (2018)

    Google Scholar 

  11. Lopes, A.M., Machado, J.T.: Discrete-time generalized mean fractional order controllers. IFAC-PapersOnLine 51(4), 43–47 (2018). 3rd IFAC Conference on Advances in Proportional-Integral-Derivative Control PID 2018. http://www.sciencedirect.com/science/article/pii/S240589631830315X

  12. Maâmar, B., Rachid, M.: IMC-PID-fractional-order-filter controllers design for integer order systems. ISA Trans. 53(5), 1620–1628 (2014). iCCA 2013. http://www.sciencedirect.com/science/article/pii/S0019057814000962

  13. Monje, C., Chen, Y., Vinagre, B., Xue, D., Feliu, V.: Fractional-order Systems and Controls: Fundamentals and Applications. Series on Advances in Industrial Control. Springer, London (2010)

    Book  Google Scholar 

  14. Monje, C.A., Vinagre, B.M., Feliu, V., Chen, Y.: Tuning and auto-tuning of fractional order controllers for industry applications. Control Eng. Pract. 16(7), 798–812 (2008). http://www.sciencedirect.com/science/article/pii/S0967066107001566

  15. Mozyrska, D., Ostalczyk, P.: Generalized fractional-order discrete-timeintegrator. Complexity 2017(3452409) (2017)

    Google Scholar 

  16. Muresan, C.I., Dutta, A., Dulf, E.H., Pinar, Z., Maxim, A., Ionescu, C.M.: Tuning algorithms for fractional order internal model controllers for time delay processes. Int. J. Control 89(3), 579–593 (2016)

    Article  MathSciNet  Google Scholar 

  17. Oprzędkiewcz, K., Mitkowski, W., Gawin, E.: The plc implementation of fractional-order operator using cfe approximation. In: Advances in Intelligent Systems and Computing, vol. 550. Springer (2017)

    Google Scholar 

  18. Oprzedkiewicz, K., Stanisławski, R., Gawin, E., Mitkowski, W.: A new algorithm for a CFE-approximated solution of a discrete-time non integer-order state equation. Bull. Pol. Acad. Sci. Tech. Sci. 65(4), 429–437 (2017)

    Google Scholar 

  19. Padula, F., Visioli, A.: Tuning rules for optimal PID and fractional-order PID controllers. J. Process Control 21(1), 69–81 (2011). http://www.sciencedirect.com/science/article/pii/S0959152410001927

    Article  Google Scholar 

  20. Rydel, M., Stanisławski, R.: A new frequency weighted Fourier-based method for model order reduction. Automatica 88, 107–112 (2018)

    Article  MathSciNet  Google Scholar 

  21. Stanisławski, R., Latawiec, K.J.: Normalized finite fractional differences - the computational and accuracy breakthroughs. Int. J. Appl. Math. Comput. Sci. 22(4), 907–919 (2012)

    Article  MathSciNet  Google Scholar 

  22. Stanisławski, R., Latawiec, K.J., Łukaniszyn, M.: A comparative analysis of Laguerre-based approximators to the Grünwald-Letnikov fractional-order difference. Math. Problems Eng. 2015, 1–10 (2015). Article ID: 512104

    Article  Google Scholar 

  23. Stanisławski, R., Rydel, M., Latawiec, K.J.: Modeling of discrete-time fractional-order state space systems using the balanced truncation method. J. Franklin Inst. 354(7), 3008–3020 (2017)

    Article  MathSciNet  Google Scholar 

  24. Tejado, I., HosseinNia, S.H., Vinagre, B.M., Chen, Y.: Efficient control of a smartwheel via internet with compensation of variable delays. Mechatronics 23(7), 821–827 (2013). 1. Fractional Order Modeling and Control in Mechatronics 2. Design, control, and software implementation for distributed MEMS (dMEMS). http://www.sciencedirect.com/science/article/pii/S0957415813000767

  25. Tejado, I., Vinagre, B.M., Traver, J.E., Prieto-Arranz, J., Nuevo-Gallardo, C.: Back to basics: meaning of the parameters of fractional order PID controllers. Mathematics 7(6) (2019). https://www.mdpi.com/2227-7390/7/6/530

  26. Vilanova, R., Visioli, A.: PID Control in the Third Millennium. Lessons Learned and New Approaches. Advances in Industrial Control. Springer, London (2012)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafał Stanisławski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Stanisławski, R., Rydel, M., Latawiec, K.J. (2020). New Implementation of Discrete-Time Fractional-Order PI Controller by Use of Model Order Reduction Methods. In: Bartoszewicz, A., Kabziński, J., Kacprzyk, J. (eds) Advanced, Contemporary Control. Advances in Intelligent Systems and Computing, vol 1196. Springer, Cham. https://doi.org/10.1007/978-3-030-50936-1_100

Download citation

Publish with us

Policies and ethics