Skip to main content

Fault-Tolerant Design of a Balanced Two-Wheel Scooter

  • Conference paper
  • First Online:
Advanced, Contemporary Control

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1196))

Abstract

Fault-tolerant control is since several years a heavily researched scientific field that was successfully applied in numerous cases. In the last years this concept was accompanied by fault-tolerant design. It intends to enhance the controllability and diagnosability of technical systems through intelligent design as well as to increase the fault-tolerance of technical systems through inherently fault-tolerant design characteristics such as redundancy. The approaches, methods and tools of fault-tolerant design were applied to a balanced two-wheel scooter on different levels, ranging from a conscious requirements management to consciously chosen redundant elements on the most concrete level - the product geometry. On the functional level a virtual decision engine is presented, which allows the generation of correction factors for the control system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Blanke, M., Kinnaert, M., Lunze, J., Staroswiecki, M.: Diagnosis and Fault-Tolerant Control. Springer-Verlag, New York (2016)

    Book  Google Scholar 

  2. Witczak, M.: Fault Diagnosis and Fault-Tolerant Control Strategies for Non-linear Systems. Lecture Notes in Electrical Engineering, vol. 266. Springer, Heidelberg (2014)

    Book  Google Scholar 

  3. Ding, S.: Model-Based Fault Diagnosis Techniques: Design Schemes, Algorithms, and Tools. Springer-Verlag, Heidelberg (2008)

    Google Scholar 

  4. Stetter, R.: Fault-Tolerant Design and Control of Automated Vehicles and Processes: Insights for the Synthesis of Intelligent Systems. Springer-Verlag, Cham (2020)

    Book  Google Scholar 

  5. Wünsch, F., Ramsaier, M., Breckle, T., Stetter, R., Till, M., Rudolph, S.: Executable cost-sensitive product development of a self-balancing two-wheel scooter with graph-based design languages. In: Marjanovic, D., et al. (eds.) Proceedings of the 15th International Design Conference DESIGN 2018, Dubrovnik (2018)

    Google Scholar 

  6. Schuster, J., Pahn, F.: Entwicklung und Bau zweier konzeptionell unterschiedlicher Segways. Bachelor-thesis, Ravensburg-Weingarten University (RWU) (2018)

    Google Scholar 

  7. Ponn, J., Lindemann, U.: Konzeptentwicklung und Gestaltung technischer Produkte. Springer, Heidelberg (2011)

    Book  Google Scholar 

  8. Cross, N.: Engineering Design Methods: Strategies for Product Design. Wiley, Hoboken (2008)

    Google Scholar 

  9. Ehrlenspiel, K., Meerkamm, H.: Integrierte Produktentwicklung. Zusammenarbeit Denkabläufe, Methodeneinsatz. Carl Hanser Verlag, Munich (2013)

    Book  Google Scholar 

  10. Lindemann, U.: Methodische Entwicklung technischer Produkte. Springer, Heidelberg (2009)

    Book  Google Scholar 

  11. Pahl, G., Beitz, W., Feldhusen, J., Grote, K.H.: Engineering Design: A Systematic Approach. Springer, London (2007)

    Book  Google Scholar 

  12. Rouissi, F., Hoblos, G.: Fault tolerant sensor network design with respect to diagnosability properties. In: Proceedings of the 8th IFAC Symposium on Fault Detection, Supervision and Safety of Technical Processes (SAFEPROCESS), pp. 1120–1124 (2012)

    Google Scholar 

  13. Shirazipourazad, S., Sen, A., Bandyopadhyay, S.: Fault-tolerant design of wireless sensor networks with directional antennas. Pervasive Mob. Comput. 13, 258–271 (2014)

    Article  Google Scholar 

  14. Oh, Y.G., Jeong, J.K., Lee, J.J., Lee, Y.H., Baek, S.M., Lee, S.J.: Fault-tolerant design for advanced diverse protection system. Nucl. Eng. Technol. 45(6), 795–802 (2013)

    Article  Google Scholar 

  15. Hsieh, T.-Y., Li, K.-H., Chung, C.-C.: A fault-analysis oriented re-design and cost-effectiveness evaluation methodology for error tolerant applications. Microelectron. J. 66, 48–57 (2017)

    Article  Google Scholar 

  16. Vedachalam, N., Umapathy, A., Ramadass, G.A.: Fault-tolerant design approach for reliable offshore multi-megawatt variable frequency converters. J. Ocean Eng. Sci. 1, 226–237 (2016)

    Article  Google Scholar 

  17. Porter, R., Ronen, A., Shoham, Y., Tennenholtz, M.: Fault tolerant mechanism design. Artif. Intell. 45(6), 1783–1799 (2013)

    MathSciNet  MATH  Google Scholar 

  18. Stetter, R., Göser, R., Gresser, S., Till, M., Witczak, M.: Fault-tolerant design of a shifting system for autonomous driving. Accepted for Presentation at the 16th International Design Conference DESIGN (2020)

    Google Scholar 

  19. Bühne, S., Herrmann, A.: Handbuch Requirements Management nach IREB Standard. Aus- und Weiterbildung zum IREB Certified Professional for Requirements Engineering Advanced Level “Requirements Management”. IREB e.V. (2015)

    Google Scholar 

  20. Bernard, R., Irlinger, R.: About watches and cars: winning R&D strategies in two branches. Presentation at the International Symposium “Engineering Design - The Art of Building Networks”, Garching, 4th April 2016 (2016)

    Google Scholar 

  21. Hruschka, P.: Business Analysis und Requirements Engineering: Produkte und Prozesse nachhaltig verbessern. Hanser, Cincinnati (2014)

    Book  Google Scholar 

  22. Ebert, C., Jastram, M.: ReqIF: seamless requirements interchange format between business partners. IEEE Softw. 29(5), 82–87 (2012)

    Article  Google Scholar 

  23. Sharif Ullah, A.M.M., Sato, M., Watanabe, M., Mamunur Rashid, M.: Analysis of Kano-model-based customer needs for product development. Int. J. Autom. Technol. 10(2), 132–143 (2016)

    Google Scholar 

  24. IBM: Rational DOORS. https://www.ibm.com/de-de/marketplace/requirements-management. Accessed 21 Mar 2020

  25. Carrillo de Gea, J.M., Nicolas, J., Fernandez Aleman, J.L., Toval, A., Ebert, C., Vizca, A.: Requirements engineering tools: capabilities, survey and assessment. Inf. Softw. Technol. 54(10), 1142–1157 (2012)

    Google Scholar 

  26. Holder, K., Zech, A., Ramsaier, M., Stetter, R., Niedermeier, H.-P., Rudolph, S., Till, M.: Model-based requirements management in gear systems design based on graph-based design languages. Appl. Sci. 7 (2017)

    Google Scholar 

  27. Stetter, R., Witczak, M.: Requirements management for monitoring and control. In: Proceedings of the 15th European Workshop an Advanced Control and Diagnosis (ACD), Bologna, Italy, 21st–22nd November 2019 (2019)

    Google Scholar 

  28. Eisenbart, B., Gericke, K., Blessing, L.T.M., McAloone, T.C.: A DSM-based framework for integrated function modelling: concept, application and evaluation. Res. Eng. Des. 28(1), 25–41 (2016)

    Article  Google Scholar 

  29. Ramsaier, M., Holder, K., Zech, A., Stetter, R., Rudolph, S., Till, M.: Digital representation of product functions in multicopter design. In: Maier, A., et al. (eds.) Proceedings of the 21st International Conference on Engineering Design (ICED 17) Vol 1: Resource Sensitive Design, Design Research Applications and Case Studies, Vancouver, Canada, 21–25 Aug 2017, pp. 369–378 (2017)

    Google Scholar 

  30. Grasser, F., D’Arrigo, A., Colombi, S., Rufer, A.: JOE: a mobile, inverted pendulum. IEEE Trans. Industr. Electron. 40(1), 107–114 (2002)

    Article  Google Scholar 

  31. Younis, W., Abdelati, M.: Design and implementation of an experimental segway model. In: Proceedings of the 2nd Mediterranean Conference on Intelligent Systems and Automation, Zarzis, Tunisia (2009)

    Google Scholar 

  32. van der Veen, J.: Stabilization and trajectory tracking of a segway. University of Groningen, Faculty of Science and Engineering (2018)

    Google Scholar 

  33. Stetter, R., Witczak, M., Pazera, M.: Virtual diagnostic sensors design for an automated guided vehicle. Appl. Sci. 8(5), 702 (2018)

    Article  Google Scholar 

  34. Stetter, R.: A virtual fuzzy actuator for the fault-tolerant control of a rescue vehicle. In: The IEEE International Conference on Fuzzy Systems (FUZZ-IEEE) (2020)

    Google Scholar 

  35. Mendonca, L.F., Sousa, J., da Costa, J.M.G.: Fault isolation using fuzzy model-based observers. IFAC Proc. Vol. 39(13), 735–740 (2006)

    Article  Google Scholar 

  36. Albers, A., Wintergerst, E.: The contact and channel approach (C&C2-A): relating a system’s physical structure to its functionality. In: Chakrabarti, A., Blessing, L. (eds.) An Anthology of Theories and Models of Design: Philosophy, Approaches and Empirical Explorations, pp. 61–72. Springer, London (2014)

    Google Scholar 

  37. Ramsaier, M., Stetter, R., Till, M., Rudolph, S.: Abstract physics representation of a balanced two-wheel scooter in graph-based design languages. Accepted for Presentation at the 16th International Design Conference DESIGN (2020)

    Google Scholar 

  38. Ryll, M., Buelthoff, H.H., Giordano, P.R.: Overactuation in UAVs for enhanced aerial manipulation: a novel quadrotor concept with tilting propellers. In: Proceedings of the 6th International Workshop on Human-Friendly Robotics (2013)

    Google Scholar 

  39. Schneider, M.G.E., van de Molengraft, M.J.G., Steinbuch, M.: Benefits of over-actuation in motion systems. In: Proceeding of the 2004 American Control Conference (2004)

    Google Scholar 

  40. Stetter, R., Simundsson, A.: Design for control. In: Proceedings of ICED 2017, vol. 4, pp. 149–158 (2017)

    Google Scholar 

  41. Dubrova, E.: Fault-Tolerant Design. Springer, New York (2013)

    Book  Google Scholar 

Download references

Acknowledgements

The project “digital product life-cycle” (ZaFH DiP) is supported by a grant from the European Regional Development Fund and the Ministry of Science, Research and the Arts of Baden-Württemberg, Germany (information under: https://efre-bw.de/). The work was additionally partially supported by the National Science Centre, Poland under Grant: UMO-2017/27/B/ST7/00620.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralf Stetter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Stetter, R., Witczak, M., Till, M. (2020). Fault-Tolerant Design of a Balanced Two-Wheel Scooter. In: Bartoszewicz, A., Kabziński, J., Kacprzyk, J. (eds) Advanced, Contemporary Control. Advances in Intelligent Systems and Computing, vol 1196. Springer, Cham. https://doi.org/10.1007/978-3-030-50936-1_116

Download citation

Publish with us

Policies and ethics