Skip to main content

Ship Autopilot Software – A Case Study

  • Conference paper
  • First Online:
Advanced, Contemporary Control

Abstract

Software of a ship autopilot, particularly its structure and size, developed in cooperation with a Dutch company is described. It is written in ST language, typical for PLCs and automation systems, in CPDev engineering environment. HMI displays are created by a graphic editor. The autopilot provides typical functionalities, such as heading control, track control, turn by radius and rate of turn, involving PID controllers. Wave-induced motions affecting the rudder are filtered out. Ship dynamics is identified by zig-zag or sinusoidal maneuvers. Control and HMI programs are executed by a runtime virtual machine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. IEC: IEC 61131-3 – Programmable controllers – Part 3: Programming languages (2003). 2013

    Google Scholar 

  2. Rzońca, D., Sadolewski, J., Stec, A.; Świder, Z., Trybus, B., Trybus, L.: Mini-DCS system programming in IEC 61131-3 Structured Text. J. Autom. Mob. Robot. Intell. Syst. 2(3), 48–54 (2008). Developing a multiplatform control environment. JAMRIS 13(4) (2019, in print)

    Google Scholar 

  3. Praxis Automation Technology B.V. http://www.praxis-automation.nl. Accessed 03 Jan 2020

  4. CPDev Homepage. https://cpdev.kia.prz.edu.pl/. Accessed 03 Jan 2020

  5. Lisowski, J.: Statek jako obiekt sterowania automatycznego. Wyd. Morskie, Gdańsk (1981). (Ship as Automatic Control Plant)

    Google Scholar 

  6. Fossen, T.I.: Guidance and Control of Ocean Vehicles, 4th edn. Wiley, Chichester (1999)

    Google Scholar 

  7. Śmierzchalski, R.: Automatyzacja i sterowanie statkiem. Wyd. PolitechnikiGdańskiej, Gdańsk (2013) (Ship Automation and Control)

    Google Scholar 

  8. Autopilot AP2000 Track Pilot. Kongsberg Maritime Ship Systems AS (2001)

    Google Scholar 

  9. Simrad AP70/AP80 Operator Manual. Navico Holding AS (2016)

    Google Scholar 

  10. Trybus, L., Świder, Z., Stec, A.: Tuning rules of conventional and advanced ship autopilot controllers. In: Szewczyk, R., Zieliński, C., Kaliczyńska, M. (eds.) Progress in Automation, Robotics and Measuring Techniques. AISC, vol. 350, pp. 303–311. Springer, Cham (2015)

    Chapter  Google Scholar 

  11. Jamro, M., Rzońca, D., Sadolewski, J., Stec, A., Świder, Z., Trybus, B., Trybus, L.: Structure and functionalities of ship autopilot simulator. In: Szewczyk, R., Zieliński, C., Kaliczyńska, M. (eds.) Challenges in Automation, Robotics and Measurement Techniques. AISC, vol. 440, pp. 223–231. Springer, Cham (2016)

    Google Scholar 

  12. Stec, A.: Ship maneuvering model for autopilot simulator. In: Szewczyk, R., Zieliński, C., Kaliczyńska, M. (eds.) Progress in Automation, Robotics and Measuring Techniques. AISC, vol. 350, pp. 265–274. Springer, Cham (2015)

    Chapter  Google Scholar 

  13. Marine Systems Simulator (2019). http://www.marinecontrol.org/Tutorial.html

  14. Morawski, L., Pomirski, J.: Design of the robust PID course-keeping control system for ships. Pol. Marit. Res. 9(1), 28–31 (2002)

    Google Scholar 

  15. Fossen, T.I., Perez, T.: Kalman filtering for positioning and heading control of ships and offshore rigs. IEEE Control Syst. Mag. 29(6), 32–46 (2009)

    Article  MathSciNet  Google Scholar 

  16. Tomera, M.: Dynamic positioning system for a ship on harbour manoeuvring with different observers. Experimental results. Pol. Marit. Res. 21(3), 13–24 (2014)

    Article  Google Scholar 

  17. Hajduk, Z., Trybus, B., Sadolewski, J.: Architecture of FPGA embedded multiprocessor programmable controller. IEEE Trans. Industr. Electron. 62(5), 2952–2961 (2015)

    Article  Google Scholar 

  18. Jamro, M., Trybus, B.: IEC 61131-3 programmable human machine interfaces for control devices. In: 6th International Conference on Human System Interaction (HSI), Sopot, Poland, pp. 48–55 (2013)

    Google Scholar 

Download references

Acknowledgments

This project is financed by the Minister of Science and Higher Education of the Republic of Poland within the “Regional Initiative of Excellence” program for years 2019 – 2022. Project number 027/RID/2018/19, amount granted 11 999 900 PLN.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dariusz Rzońca .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rzońca, D., Sadolewski, J., Stec, A., Świder, Z., Trybus, B., Trybus, L. (2020). Ship Autopilot Software – A Case Study. In: Bartoszewicz, A., Kabziński, J., Kacprzyk, J. (eds) Advanced, Contemporary Control. Advances in Intelligent Systems and Computing, vol 1196. Springer, Cham. https://doi.org/10.1007/978-3-030-50936-1_124

Download citation

Publish with us

Policies and ethics