Abstract
This paper deals with an analysis and design of Dual Extended Kalman Filters (DKFs) to estimate parameters and state variables in Permanent Magnet Synchronous Machines (PMSMs) to be utilized in a control structure. A dual estimation problem consists of a simultaneous estimation of states of the dynamical system and its parameters using only noisy output observations. In this paper, the limit of an Augmented and Extended Kalman Filter (AEKF) obtained through standard state augmentation to estimate parameters is shown and, alternatively, a DKF approach which is characterized by the use of the state model descriptions in the output of an AEKF is proposed. The two different approaches are analyzed and compared. These results are supported by simulations.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Haykin, S.: Kalman Filtering and Neural Networks. Wiley, Boston (2001)
Hilairet, M., Auger, F., Berthelot, E.: Speed and rotor flux estimation of induction machines using a two-stage extended Kalman filter. Automatica 45, 1819–1827 (2009)
Rahman, M.A., Vilathgamuwa, D.M., Uddin, M.N., Tseng, K.J.: Nonlinear control of interior permanent magnet synchronous motor. IEEE Trans. Indus. Appl. 39(2), 408–416 (2003)
Mercorelli, P.: Robust feedback linearization using an adaptive PD regulator for a sensorless control of a throttle valve. Mechatronics 19(8), 1334–1345 (2009)
Mercorelli, P.: A hysteresis hybrid extended Kalman filter as an observer for sensorless valve control in camless internal combustion engines. IEEE Trans. Indus. Appl. 48(6), 1940–1949 (2012)
Mercorelli, P.: A two-stage augmented extended Kalman filter as an observer for sensorless valve control in camless internal combustion engines. IEEE Trans. Indus. Electron. 59(11), 4236–4247 (2012)
Mercorelli, P.: A two-stage sliding-mode high-gain observer to reduce uncertainties and disturbances effects for sensorless control in automotive applications. IEEE Trans. Indus. Electron. 62(9), 5929–5940 (2015)
Mercorelli, P.: A switching observer for sensorless control of an electromagnetic valve actuator for camless internal combustion engines. In: Proceedings of the 50th International Conference on Decision and Control (CDC 2011), Orlando, USA, December 2011
Sontag, E.D.: Mathematical Control Theory: Deterministic Finite Dimensional Systems. Springer-VerlagBerlin, Heidelberg (1998)
Stumberger, B., Stumberger, G., Dolinar, D., Hamler, A., Trlep, M.: Evaluation of saturation and cross-magnetization effects in interior permanent-magnet synchronous motor. IEEE Trans. Indus. Appl. 39(5), 1264–1271 (2003)
Tian, G., Yan, Y., Jun, W., Ru, Z.Y., Peng, Z.X.: Rotor position estimation of sensorless PMSM based on extented Kalman filter. In: Proceedings of the 2018 IEEE International Conference on Mechatronics, Robotics and Automation (ICMRA), pp. 12–16 (2018)
Vas, P., Brown, J.E., Hallenius, K.E.: Cross-saturation in smooth-air-gap electrical machines. IEEE Power Eng. Rev. PER–6(3), 37 (1986)
Vas, P., Hallenius, K.E., Brown, J.E.: Cross-saturation in smooth-air-gap electrical machines. IEEE Trans. Energy Convers. EC–1(1), 103–112 (1986)
Zwerger, T., Mercorelli, P.: Combining SMC and MTPA using an EKF to estimate parameters and states of an interior PMSM. In: Proceedings of the 20th International Carpathian Control Conference (ICCC), pp. 1–6 (2019)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Zwerger, T., Mercorelli, P. (2020). Dual Kalman Filters Analysis for Interior Permanent Magnet Synchronous Motors. In: Bartoszewicz, A., Kabziński, J., Kacprzyk, J. (eds) Advanced, Contemporary Control. Advances in Intelligent Systems and Computing, vol 1196. Springer, Cham. https://doi.org/10.1007/978-3-030-50936-1_36
Download citation
DOI: https://doi.org/10.1007/978-3-030-50936-1_36
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-50935-4
Online ISBN: 978-3-030-50936-1
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)