Skip to main content

The Quickly Adjustable Digital FOPID Controller

  • Conference paper
  • First Online:
Advanced, Contemporary Control

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1196))

Abstract

This study investigates an accuracy estimation of CFE approximation describing the switchable Fractional Order PID controller (FOPID). Its idea consists of the use of predefined fractional CFE models stored in an array. The set of models describes the range of fractional orders between 0 and 1 with predefined quantization step. In the paper, the accuracy analysis of the proposed approach is presented. The influence of various factors is examined during the operation of the switching mechanism between fractional orders. Results are verified by simulations and tests on PLC.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Caponetto, R., Dongola, G., Fortuna, L., Petras, I.: Fractional Order Systems: Modeling and Control Applications. World Scientific Series on Nonlinear Science, Series A, vol. 72. World Scientific Publishing, Singapore (2010)

    Google Scholar 

  2. Chen, Y.Q., Moore, K.L.: Discretization schemes for fractional order differentiators and integrators. IEEE Trans. Circuits Syst. - I Fundam. Theory Appl. 49(3), 263–269 (2002)

    MathSciNet  MATH  Google Scholar 

  3. Das, S.: Functional Fractional Calculus for System Identification and Controls. Springer, Heidelberg (2008)

    MATH  Google Scholar 

  4. Kaczorek, T.: Selected Problems of Fractional System Theory. Springer Verlag, Heidelberg (2011)

    Book  Google Scholar 

  5. Majka, Ł., Klimas, M.: Diagnostic approach in assessment of a ferroresonant circuit. Electr. Eng. (2019). https://doi.org/10.1007/s00202-019-00761-5

  6. Matignon, D.: Stability results for fractional differential equations with applications to control processing. Arch. Electr. Eng. (2019). https://doi.org/10.24425/aee.2019.129342

    Article  Google Scholar 

  7. Matusiak, M., Ostalczyk, P.: Problems in solving fractional differential equations in a microcontroller implementation of an FOPID controller. In: IMACS-SMC Proceedings, Lille, France (1996)

    Google Scholar 

  8. Oprzȩdkiewicz, K.: Accuracy estimation of digital fractional order PID controller. In: Theory and Applications of Non-integer Order Systems (2017). https://doi.org/10.1007/978-3-319-45474-0_24

  9. Oprzȩdkiewicz, K., Mitkowski, W., Gawin, E., Dziedzic, K.: The Caputo vs. Caputo-Fabrizio operators in modeling of heat transfer process. Bull. Pol. Acad. Sci. Tech. Sci. 66, 501–507 (2018)

    Google Scholar 

  10. Oziablo, P., Mozyrska, D., Wyrwas, M.: A digital PID controller based on Grünwald-Letnikov fractional-, variable-order operator. In: Conference: 2019 24th International Conference on Methods and Models in Automation and Robotics (2019). https://doi.org/10.1109/MMAR.2019.8864688

  11. Petras, I.: Realization of fractional order controller based on PLC and its utilization to temperature control. Transfer inovaci nr 14, 34–38 (2009)

    Google Scholar 

  12. Petras, I.: Fractional derivatives, fractional integrals and fraction differential equations. Technical University of Kosice (2012)

    Google Scholar 

  13. Petras, I.: http://people.tuke.sk/igor.podlubny/USU/matlab/petras/dfod1.m

  14. Podlubny, I.: Fractional Differential Equations. Academic Press, Cambridge (1999)

    MATH  Google Scholar 

  15. Sahoo, P.: Optimizing Current Strategies and Applications in Industrial Engineering, India (2019). https://doi.org/10.4018/978-1-5225-8223-6

  16. Tepljakov, A., Alagoz, B.B., Yeroglu, C., Gonzalez, E., HosseinNia, S.H., Petlenko, E.: Fopid controllers and their industrial applications: a survey of recent results. IFAC-PapersOnLine 51(4), 25–30 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klaudia Dziedzic .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dziedzic, K., Oprzȩdkiewicz, K. (2020). The Quickly Adjustable Digital FOPID Controller. In: Bartoszewicz, A., Kabziński, J., Kacprzyk, J. (eds) Advanced, Contemporary Control. Advances in Intelligent Systems and Computing, vol 1196. Springer, Cham. https://doi.org/10.1007/978-3-030-50936-1_71

Download citation

Publish with us

Policies and ethics