Skip to main content

Fractional-Order Linear System Transformation to the System Described by a Classical Equation

  • Conference paper
  • First Online:
Advanced, Contemporary Control

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1196))

Abstract

In the paper, a method of “intigeration" of a linear time-invariant continuous or discrete-time system described by fractional-order differential/difference equations is proposed. The word intigeration means a procedure of connecting in series to the fractional plant a fractional element called further an “intigerator" such that the resulting two block system is described by the classical integer order differential/difference equation. The intigerator synthesis method is given. The stability conditions of the integer system are given. The proposed procedure enables to use classical methods of PID control tuning. It may also be used to tune the variable-, fractional – order PID controller.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Azarmi, R., Tavakoli-Kakhiki, M., Sedigh, A.K., Fatehi, A.: Robust Fractional Order PI Controller Tuning Based on Bode’s Ideal Transfer Function. IFAC-PaperOnLine 49(9), 158–163 (2016)

    Article  Google Scholar 

  2. Åström, K.J.: PID controllers: theory, design and tuning. In Instrument Society of America. (1995) https://doi.org/1556175167

  3. Barbosa, R.S., Silva, M.F., Machado, J.A.: Tuning and Application of Integer and Fractional Order PID Controllers, Springer Science+Business Media B.V. pp.245 - 255 (2009)

    Google Scholar 

  4. Chen, YangQuan, Vinagre, B.M., Podlubny, I.: Using Continued Fraction Expansion to Discretize Fractional Order Derivatives. Nonlinear Dynamics, Special Issue on Fractional Derivatives and Their Applications, pp. 1 - 18 (2003)

    Google Scholar 

  5. Das, S., Saha, S., Das, S., Gupta, A.: On the Selection of Tuning Methodology of FOPID Controllers for the Control of Higher Order Processes. ISA Transactions 50(3), 376–388 (2011). https://doi.org/10.1016/J.ISATRA.2011.02.003

    Article  Google Scholar 

  6. Dastranj, M.R., Rouhani, M., Hajipoor, A.: Design of Optimal Fractional Order PID Controller Using PSO Algorithm. International Journal of Computer Theory and Engineering. (2012). https://doi.org/10.7763/ijcte.2012.v4.499

    Article  Google Scholar 

  7. Elkwakil, A.S.: Fractional-order circuits and systems: an emerging disciplinary research area. IEEE Circuits System Magazine 10(4), 40–50 (2010)

    Article  Google Scholar 

  8. Gligor, A., Dulǎu, T. M.: Fractional Order Controllers Versus Integer Order Controllers. Procedia Engineering 181, 538–545 (2017). https://doi.org/10.1016/j.proeng.2017.02.431

  9. Jakubowska, A., Walczak, J.: Electrical Realizations of Fractional-Order Elements: I Synthesis of the Arbitrary Order Elements. Poznan University of Technology Academic Journals 85, 137–148 (2016)

    Google Scholar 

  10. Kaczorek, T., Rogowski K.: Fractional linear systems and electrical circuits, Studies in Systems, Decision and Control, Springer, Cham, vol. 13 (2015). https://doi.org/10.1007/978-3-319-11361-6

  11. Kai-Xin, H., Ke-Qin Z.: Mechanical Analogies of Fractional Elements, Chinese Physics Letters 26(10), https://doi.org/10.1088/0256-307X/26/10/108301

  12. Kilbas, A. A., Srivastava, H. M., Trujillo, J. J.: Theory and Applications of Fractional Differential Equations 204 (2006). https://doi.org/10.1016/S0304-0208(06)X8001-5

  13. Miller, K.S., Ross, B.: An Introduction to the Fractional Calculus and Fractional Differential Equations. John Wiley and Sons, New York (1993)

    MATH  Google Scholar 

  14. Oldam , K. B., SpanierJ.: The Fractional Calculus: Theory and Applications of Differential and Integration of Arbitrary Order, Dver Publications, (1995)

    Google Scholar 

  15. Ostalczyk, P.: Discrete Fractional Calculus. Some applications in control and image processing, World Scientific Publishing Co Pte Ltd., Series in Computer Vision - Vol 4, Singapore (2016)

    Google Scholar 

  16. Oustaloup, A., La dérivation non entière: théorie, synthèse et applications, Traité des Nouvelles Technologies séroe automatique, Hermes, Paris (1995)

    Google Scholar 

  17. Podlubny, I.: Fractional Differential Equations. Academic Press, London (1999)

    MATH  Google Scholar 

  18. Rafik, F., Gualous, H., Gallay, Y.: Frequency, thermal and voltage supercapacitor characterisation and modelling. Journal of Power Sources 165, 928–934 (2007)

    Article  Google Scholar 

  19. Modeling of coils using fractional derivatives: Schafer, J., Kruger. K. Journal of Magnetism and Magnetic Materials 307, 91–98 (2006)

    Article  Google Scholar 

  20. Sheng, H., Chen, Y.Q., Qiu, T.S.: Fractional Processes and Fractional-Order Signal Processing. Springer-Verlag, Singapore, Techniques and Applications (2012)

    Book  Google Scholar 

  21. Valerio, D., da Costa, J.: An Introduction to Fractional Control. The Institution of Engineering and Technology, London (2013)

    MATH  Google Scholar 

  22. Vinagr, B.M., Podlubny, I., Hernandez, A., Feliu, V.: Some approximations of fractional order operators used in control theory. Fractional Calculus and Applied Analysis, pp. 1-18 (2000)

    Google Scholar 

Download references

Acknowledgments

The work was supported by funds of the Polish National Science Center granted on the basis of decision DEC-2016/23/B/ST7/03686.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Piotr Ostalczyk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ostalczyk, P. (2020). Fractional-Order Linear System Transformation to the System Described by a Classical Equation. In: Bartoszewicz, A., Kabziński, J., Kacprzyk, J. (eds) Advanced, Contemporary Control. Advances in Intelligent Systems and Computing, vol 1196. Springer, Cham. https://doi.org/10.1007/978-3-030-50936-1_75

Download citation

Publish with us

Policies and ethics