Skip to main content

Accuracy Estimation of the Fractional, Discrete-Continuous Model of the One-Dimensional Heat Transfer Process

  • Conference paper
  • First Online:
Advanced, Contemporary Control

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1196))

  • 1232 Accesses

Abstract

In the paper a new, state space, finite dimensional, non integer order model of a one-dimensional heat transfer process is considered. The proposed model uses a well known finite difference method and fractional Caputo operator to express the time derivative. The second order backward difference describes the derivative along the length. The analytical formula of the step response is given. Accuracy and convergence of the proposed model are numerically analyzed and compared to previously proposed state space model using semigroup approach. Results of simulations point that the good accuracy of the proposed model can be achieved for its relatively low order.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Almeida, R., Torres, D.F.M.: Necessary and sufficient conditions for the fractional calculus of variations with Caputo derivatives. Commun. Nonlinear Sci. Numer. Simul. 16(3), 1490–1500 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  2. Atangana, A., Baleanu, D.: New fractional derivatives with non-local and non-singular kernel: theory and application to heat transfer. Therm. Sci. 20(2), 763–769 (2016)

    Article  Google Scholar 

  3. Caponetto, R., Dongola, G., Fortuna, L., Petras, I.: Fractional order systems: modeling and control applications. In: Chua, L.O. (ed.) World Scientific Series on Nonlinear Science, pp. 1–178. University of California, Berkeley (2010)

    Google Scholar 

  4. Das, S.: Functional Fractional Calculus for System Identyfication and Control. Springer, Heidelberg (2010)

    Google Scholar 

  5. Dlugosz, M., Skruch, P.: The application of fractional-order models for thermal process modelling inside buildings. J. Building Phys. 1(1), 1–13 (2015)

    Google Scholar 

  6. Dzielinski, A., Sierociuk, D., Sarwas, G.: Some applications of fractional order calculus. Bull. Pol. Acad. Sci. Tech. Sci. 58(4), 583–592 (2010)

    MATH  Google Scholar 

  7. Gal, C., Warma, M.: Elliptic and parabolic equations with fractional diffusion and dynamic boundary conditions. Evol. Equ. Control Theory 5(1), 61–103 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  8. Kaczorek, T.: Selected Problems of Fractional Systems Theory. Springer, Heidelberg (2011)

    Book  MATH  Google Scholar 

  9. Kaczorek, T.: Singular fractional linear systems and electrical circuits. Int. J. Appl. Math. Comput. Sci. 21(2), 379–384 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  10. Kaczorek, T.: Reduced-order fractional descriptor observers for a class of fractional descriptor continuous-time nonlinear systems. Int. J. Appl. Math. Comput. Sci. 26(2), 277–283 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  11. Kaczorek, T., Rogowski, K.: Fractional Linear Systems and Electrical Circuits. Bialystok University of Technology, Bialystok (2014)

    MATH  Google Scholar 

  12. Kochubei, A.: Fractional-parabolic systems. Preprint arXiv:1009.4996 [math.ap] (2011)

  13. Mitkowski, W.: Approximation of fractional diffusion-wave equation. Acta Mechanica et Automatica 5(2), 65–68 (2011)

    MathSciNet  Google Scholar 

  14. Oprzedkiewicz, K.: The discrete-continuous model of heat plant. Automatyka 2(1), 35–45 (1998). (in Polish)

    Google Scholar 

  15. Oprzedkiewicz, K.: The interval parabolic system. Arch. Control Sci. 13(4), 415–430 (2003)

    MathSciNet  MATH  Google Scholar 

  16. Oprzedkiewicz, K.: A controllability problem for a class of uncertain parameters linear dynamic systems. Arch. Control Sci. 14(1), 85–100 (2004)

    MathSciNet  MATH  Google Scholar 

  17. Oprzedkiewicz, K.: An observability problem for a class of uncertain-parameter linear dynamic systems. Int. J. Appl. Math. Comput. Sci. 15(3), 331–338 (2005)

    MathSciNet  MATH  Google Scholar 

  18. Oprzedkiewicz, K., Gawin, E.: A non-integer order, state space model for one dimensional heat transfer process. Arch. Control Sci. 26(2), 261–275 (2016)

    Article  MathSciNet  Google Scholar 

  19. Oprzedkiewicz, K., Gawin, E., Mitkowski, W.: Modeling heat distribution with the use of a non-integer order, state space model. Int. J. Appl. Math. Comput. Sci. 26(4), 749–756 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  20. Oprzedkiewicz, K., Mitkowski, W.: A memory-efficient noninteger-order discrete-time state-space model of a heat transfer process. Int. J. Appl. Math. Comput. Sci. (AMCS) 28(4), 649–659 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  21. Oprzedkiewicz, K., Mitkowski, W., Gawin, E., Dziedzic, K.: The Caputo vs. Caputo-Fabrizio operators in modeling of heat transfer process. Bull. Pol. Acad. Sci. Tech. Sci. 66(4), 501–507 (2018)

    Google Scholar 

  22. Oprzędkiewicz, K., Gawin, E., Mitkowski, W.: Parameter identification for non integer order, state space models of heat plant. In: MMAR 2016: 21st International Conference on Methods and Models in Automation and Robotics, Międzyzdroje, Poland, 29 August–01 September 2016, pp. 184–188 (2016)

    Google Scholar 

  23. Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999)

    MATH  Google Scholar 

  24. Popescu, E.: On the fractional cauchy problem associated with a feller semigroup. Math. Rep. 12(2), 181–188 (2010)

    MathSciNet  MATH  Google Scholar 

  25. Sajewski, L.: Minimum energy control of descriptor fractional discrete-time linear systems with two different fractional orders. Int. J. Appl. Math. Comput. Sci. 27(1), 33–41 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  26. Salti, N.A., Karimov, E., Kerbal, S.: Boundary-value problems for fractional heat equation involving Caputo-Fabrizio derivative. New Trends Math. Sci. 4(4), 79–89 (2016)

    Article  Google Scholar 

  27. Sierociuk, D., Skovranek, T., Macias, M., Podlubny, I., Petras, I., Dzielinski, A., Ziubinski, P.: Diffusion process modeling by using fractional-order models. Appl. Math. Comput. 257(1), 2–11 (2015)

    Google Scholar 

Download references

Acknowledgment

This paper was sponsored by AGH project no 16.16.120.773.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krzysztof Oprzędkiewicz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Oprzędkiewicz, K., Dziedzic, K. (2020). Accuracy Estimation of the Fractional, Discrete-Continuous Model of the One-Dimensional Heat Transfer Process. In: Bartoszewicz, A., Kabziński, J., Kacprzyk, J. (eds) Advanced, Contemporary Control. Advances in Intelligent Systems and Computing, vol 1196. Springer, Cham. https://doi.org/10.1007/978-3-030-50936-1_96

Download citation

Publish with us

Policies and ethics