Skip to main content

Development of a Vector Geometrical Model for PKM Identification

  • Conference paper
  • First Online:
Advances in Robot Kinematics 2020 (ARK 2020)

Part of the book series: Springer Proceedings in Advanced Robotics ((SPAR,volume 15))

Included in the following conference series:

  • 884 Accesses

Abstract

Geometric accuracy of parallel kinematic machine tool is an issue that limits their use in challenging context such as the aeronautic. One way to improve their accuracy consists at improving their geometrical identification process. For this purpose, a new geometric modeling method on the vectorial modeling of joint invariants is proposed in this article. This method introduces only independent geometric parameters and guarantees the robustness of the identification process. The studied machine-tool structure is modeled with links connected by joints. The geometrical end-effector pose is defined relying on geometrical defects and joint degrees of freedom. This new methodology is applied to an Exechon-like parallel kinematic machine tool, the Tripteor X7.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alici, G., Shirinzadeh, B.: A systematic technique to estimate positioning errors for robot accuracy improvement using laser interferometry based sensing. Mech. Mach. Theory 40(8), 879–906 (2005). https://doi.org/10.1016/j.mechmachtheory.2004.12.012

    Article  MATH  Google Scholar 

  2. Bai, Y., Zhuang, H., Roth, Z.: Experiment study of PUMA robot calibration using a laser tracking system. In: Proceedings of the 2003 IEEE International Workshop on Soft Computing in Industrial Applications, 2003. SMCia/03. IEEE (2003). https://doi.org/10.1109/smcia.2003.1231359

  3. Chanal, H., Duc, E., Ray, P., Hascoët, J.: A new approach for the geometrical calibration of parallel kinematics machines tools based on the machining of a dedicated part. Int. J. Mach. Tools Manuf 47(7–8), 1151–1163 (2007). https://doi.org/10.1016/j.ijmachtools.2006.09.006

    Article  Google Scholar 

  4. Chen, G., Wang, H., Lin, Z.: Determination of the identifiable parameters in robot calibration based on the POE formula. IEEE Trans. Rob. 30(5), 1066–1077 (2014). https://doi.org/10.1109/tro.2014.2319560

    Article  Google Scholar 

  5. Dufailly, J., Poss, M.: Cotation fonctionnelle, chaîne de cotes, optimisation des tolérances: analyse fonctionnelle technique. Ellipses (2017)

    Google Scholar 

  6. Everett, L., Driels, M., Mooring, B.: Kinematic modelling for robot calibration. In: Proceedings of the IEEE International Conference on Robotics and Automation, Institute of Electrical and Electronics Engineers (1987). https://doi.org/10.1109/robot.1987.1087818

  7. Fu, R., Jin, Y., Yang, L., Sun, D., Murphy, A., Higgins, C.: Review on structure-based errors of parallel kinematic machines in comparison with traditional NC machines. In: Communications in Computer and Information Science, pp. 249–256. Springer, Singapore (2018). https://doi.org/10.1007/978-981-13-2396-6_23

  8. Hartenberg, R.S., Denavit, J.: A kinematic notation for lower pair mechanisms based on matrices (1955)

    Google Scholar 

  9. Huang, T., Chetwynd, D.G., Whitehouse, D.J., Wang, J.: A general and novel approach for parameter identification of 6-DOF parallel kinematic machines. Mech. Mach. Theory 40(2), 219–239 (2005). https://doi.org/10.1016/j.mechmachtheory.2004.06.009

    Article  MATH  Google Scholar 

  10. Jin, Y., et al.: Kinematic analysis and dimensional synthesis of Exechon parallel kinematic machine for large volume machining. J. Mech. Robot. 7(4) (2015). https://doi.org/10.1115/1.4029499

  11. Fan, K.C., Wang, H., Zhao, J.W., Chang, T.H.: Sensitivity analysis of the 3-PRS parallel kinematic spindle platform of a serial-parallel machine tool. Int. J. Mach. Tools Manuf 43(15), 1561–1569 (2003). https://doi.org/10.1016/s0890-6955(03)00202-5

    Article  Google Scholar 

  12. Pritschow, G., Eppler, C., Garber, T.: Influence of the dynamic stiffness on the accuracy of PKM. In: Chemnitz Parallel Kinematic Seminar, pp. 313–333 (2002)

    Google Scholar 

  13. Ramesh, R., Mannan, M., Poo, A.: Error compensation in machine tools — a review. Int. J. Mach. Tools Manuf 40(9), 1235–1256 (2000). https://doi.org/10.1016/s0890-6955(00)00009-2

    Article  Google Scholar 

  14. Renders, J.M., Rossignol, E., Becquet, M., Hanus, R.: Kinematic calibration and geometrical parameter identification for robots. IEEE Trans. Robot. Autom. 7(6), 721–732 (1991). https://doi.org/10.1109/70.105381

    Article  Google Scholar 

  15. Song, Y., Zhang, J., Lian, B., Sun, T.: Kinematic calibration of a 5-DoF parallel kinematic machine. Precis. Eng. 45, 242–261 (2016). https://doi.org/10.1016/j.precisioneng.2016.03.002

    Article  Google Scholar 

  16. Wan, A., Song, L., Xu, J., Liu, S., Chen, K.: Calibration and compensation of machine tool volumetric error using a laser tracker. Int. J. Mach. Tools Manuf 124, 126–133 (2018). https://doi.org/10.1016/j.ijmachtools.2017.10.004

    Article  Google Scholar 

  17. Yang, X., Wu, L., Li, J., Chen, K.: A minimal kinematic model for serial robot calibration using POE formula. Robot. Comput. Integr. Manuf. 30(3), 326–334 (2014). https://doi.org/10.1016/j.rcim.2013.11.002

    Article  Google Scholar 

Download references

Acknowledgements

This work is partially supported by the ECSASDPE H2020-MSCA-RISE-2016 n\(^\circ \)734272 project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J.-B. Guyon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Guyon, JB., Boudon, B., Chanal, H., Blaysat, B. (2021). Development of a Vector Geometrical Model for PKM Identification. In: Lenarčič, J., Siciliano, B. (eds) Advances in Robot Kinematics 2020. ARK 2020. Springer Proceedings in Advanced Robotics, vol 15. Springer, Cham. https://doi.org/10.1007/978-3-030-50975-0_15

Download citation

Publish with us

Policies and ethics